The Camera Lens Focal Length
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Digital Single Lens Reflex”
PHOTOGRAPHY GENERIC ELECTIVE SEM-II DSLR stands for “Digital Single Lens Reflex”. In simple language, a DSLR is a digital camera that uses a mirror mechanism to either reflect light from a camera lens to an optical viewfinder (which is an eyepiece on the back of the camera that one looks through to see what they are taking a picture of) or let light fully pass onto the image sensor (which captures the image) by moving the mirror out of the way. Although single lens reflex cameras have been available in various shapes and forms since the 19th century with film as the recording medium, the first commercial digital SLR with an image sensor appeared in 1991. Compared to point-and-shoot and phone cameras, DSLR cameras typically use interchangeable lenses. Take a look at the following image of an SLR cross section (image courtesy of Wikipedia): When you look through a DSLR viewfinder / eyepiece on the back of the camera, whatever you see is passed through the lens attached to the camera, which means that you could be looking at exactly what you are going to capture. Light from the scene you are attempting to capture passes through the lens into a reflex mirror (#2) that sits at a 45 degree angle inside the camera chamber, which then forwards the light vertically to an optical element called a “pentaprism” (#7). The pentaprism then converts the vertical light to horizontal by redirecting the light through two separate mirrors, right into the viewfinder (#8). When you take a picture, the reflex mirror (#2) swings upwards, blocking the vertical pathway and letting the light directly through. -
Optics – Panoramic Lens Applications Revisited
Panoramic Lens Applications Revisited Simon Thibault* M.Sc., Ph.D., Eng Director, Optics Division/Principal Optical Designer ImmerVision 2020 University, Montreal, Quebec, H3A 2A5 Canada ABSTRACT During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope…), remote sensing (pipe inspection, crime scene investigation, archeology…), multimedia (hemispheric projector, panoramic image…). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360o hemispheric area. Keywords: medical imaging, image analysis, immersion, omnidirectional, panoramic, panomorph, multimedia, total situation awareness, remote sensing, wide-angle 1. INTRODUCTION Photography was invented by Daguerre in 1837, and at that time the main photographic objective was that the lens should cover a wide-angle field of view with a relatively high aperture1. -
Panoramas Shoot with the Camera Positioned Vertically As This Will Give the Photo Merging Software More Wriggle-Room in Merging the Images
P a n o r a m a s What is a Panorama? A panoramic photo covers a larger field of view than a “normal” photograph. In general if the aspect ratio is 2 to 1 or greater then it’s classified as a panoramic photo. This sample is about 3 times wider than tall, an aspect ratio of 3 to 1. What is a Panorama? A panorama is not limited to horizontal shots only. Vertical images are also an option. How is a Panorama Made? Panoramic photos are created by taking a series of overlapping photos and merging them together using software. Why Not Just Crop a Photo? • Making a panorama by cropping deletes a lot of data from the image. • That’s not a problem if you are just going to view it in a small format or at a low resolution. • However, if you want to print the image in a large format the loss of data will limit the size and quality that can be made. Get a Really Wide Angle Lens? • A wide-angle lens still may not be wide enough to capture the whole scene in a single shot. Sometime you just can’t get back far enough. • Photos taken with a wide-angle lens can exhibit undesirable lens distortion. • Lens cost, an auto focus 14mm f/2.8 lens can set you back $1,800 plus. What Lens to Use? • A standard lens works very well for taking panoramic photos. • You get minimal lens distortion, resulting in more realistic panoramic photos. • Choose a lens or focal length on a zoom lens of between 35mm and 80mm. -
Estimation and Correction of the Distortion in Forensic Image Due to Rotation of the Photo Camera
Master Thesis Electrical Engineering February 2018 Master Thesis Electrical Engineering with emphasis on Signal Processing February 2018 Estimation and Correction of the Distortion in Forensic Image due to Rotation of the Photo Camera Sathwika Bavikadi Venkata Bharath Botta Department of Applied Signal Processing Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden This thesis is submitted to the Department of Applied Signal Processing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering with Emphasis on Signal Processing. Contact Information: Author(s): Sathwika Bavikadi E-mail: [email protected] Venkata Bharath Botta E-mail: [email protected] Supervisor: Irina Gertsovich University Examiner: Dr. Sven Johansson Department of Applied Signal Processing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract Images, unlike text, represent an effective and natural communica- tion media for humans, due to their immediacy and the easy way to understand the image content. Shape recognition and pattern recog- nition are one of the most important tasks in the image processing. Crime scene photographs should always be in focus and there should be always be a ruler be present, this will allow the investigators the ability to resize the image to accurately reconstruct the scene. There- fore, the camera must be on a grounded platform such as tripod. Due to the rotation of the camera around the camera center there exist the distortion in the image which must be minimized. -
Chapter 3 (Aberrations)
Chapter 3 Aberrations 3.1 Introduction In Chap. 2 we discussed the image-forming characteristics of optical systems, but we limited our consideration to an infinitesimal thread- like region about the optical axis called the paraxial region. In this chapter we will consider, in general terms, the behavior of lenses with finite apertures and fields of view. It has been pointed out that well- corrected optical systems behave nearly according to the rules of paraxial imagery given in Chap. 2. This is another way of stating that a lens without aberrations forms an image of the size and in the loca- tion given by the equations for the paraxial or first-order region. We shall measure the aberrations by the amount by which rays miss the paraxial image point. It can be seen that aberrations may be determined by calculating the location of the paraxial image of an object point and then tracing a large number of rays (by the exact trigonometrical ray-tracing equa- tions of Chap. 10) to determine the amounts by which the rays depart from the paraxial image point. Stated this baldly, the mathematical determination of the aberrations of a lens which covered any reason- able field at a real aperture would seem a formidable task, involving an almost infinite amount of labor. However, by classifying the various types of image faults and by understanding the behavior of each type, the work of determining the aberrations of a lens system can be sim- plified greatly, since only a few rays need be traced to evaluate each aberration; thus the problem assumes more manageable proportions. -
A 7.5X Afocal Zoom Lens Design and Kernel Aberration Correction Using Reversed Ray Tracing Methods
A 7.5X Afocal Zoom Lens Design and Kernel Aberration Correction Using Reversed Ray Tracing Methods Item Type text; Electronic Thesis Authors Zhou, Xi Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:12:56 Link to Item http://hdl.handle.net/10150/634395 A 7.5X Afocal Zoom Lens Design and Kernel Aberration Correction Using Reversed Ray Tracing Methods by Xi Zhou ________________________________ Copyright © Xi Zhou 2019 A Thesis Submitted to the Faculty of the JAMES C. WYANT COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment of the requirements For the degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 2 Table of Contents List of Figures ................................................................................................................................. 5 ABSTRACT .................................................................................................................................... 9 KEYWORDS ................................................................................................................................ 10 1. INTRODUCTION .................................................................................................................... 11 1.1 Motivation .......................................................................................................................... -
Seeing Like Your Camera ○ My List of Specific Videos I Recommend for Homework I.E
Accessing Lynda.com ● Free to Mason community ● Set your browser to lynda.gmu.edu ○ Log-in using your Mason ID and Password ● Playlists Seeing Like Your Camera ○ My list of specific videos I recommend for homework i.e. pre- and post-session viewing.. PART 2 - FALL 2016 ○ Clicking on the name of the video segment will bring you immediately to Lynda.com (or the login window) Stan Schretter ○ I recommend that you eventually watch the entire video class, since we will only use small segments of each video class [email protected] 1 2 Ways To Take This Course What Creates a Photograph ● Each class will cover on one or two topics in detail ● Light ○ Lynda.com videos cover a lot more material ○ I will email the video playlist and the my charts before each class ● Camera ● My Scale of Value ○ Maximum Benefit: Review Videos Before Class & Attend Lectures ● Composition & Practice after Each Class ○ Less Benefit: Do not look at the Videos; Attend Lectures and ● Camera Setup Practice after Each Class ○ Some Benefit: Look at Videos; Don’t attend Lectures ● Post Processing 3 4 This Course - “The Shot” This Course - “The Shot” ● Camera Setup ○ Exposure ● Light ■ “Proper” Light on the Sensor ■ Depth of Field ■ Stop or Show the Action ● Camera ○ Focus ○ Getting the Color Right ● Composition ■ White Balance ● Composition ● Camera Setup ○ Key Photographic Element(s) ○ Moving The Eye Through The Frame ■ Negative Space ● Post Processing ○ Perspective ○ Story 5 6 Outline of This Class Class Topics PART 1 - Summer 2016 PART 2 - Fall 2016 ● Topic 1 ○ Review of Part 1 ● Increasing Your Vision ● Brief Review of Part 1 ○ Shutter Speed, Aperture, ISO ○ Shutter Speed ● Seeing The Light ○ Composition ○ Aperture ○ Color, dynamic range, ● Topic 2 ○ ISO and White Balance histograms, backlighting, etc. -
Depth of Field PDF Only
Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance. -
Depth of Focus (DOF)
Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle. -
Ground-Based Photographic Monitoring
United States Department of Agriculture Ground-Based Forest Service Pacific Northwest Research Station Photographic General Technical Report PNW-GTR-503 Monitoring May 2001 Frederick C. Hall Author Frederick C. Hall is senior plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Natural Resources, P.O. Box 3623, Portland, Oregon 97208-3623. Paper prepared in cooperation with the Pacific Northwest Region. Abstract Hall, Frederick C. 2001 Ground-based photographic monitoring. Gen. Tech. Rep. PNW-GTR-503. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 340 p. Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs taken at a specific site to monitor conditions or change. It may be divided into two systems: (1) comparison photos, whereby a photograph is used to compare a known condition with field conditions to estimate some parameter of the field condition; and (2) repeat photo- graphs, whereby several pictures are taken of the same tract of ground over time to detect change. Comparison systems deal with fuel loading, herbage utilization, and public reaction to scenery. Repeat photography is discussed in relation to land- scape, remote, and site-specific systems. Critical attributes of repeat photography are (1) maps to find the sampling location and of the photo monitoring layout; (2) documentation of the monitoring system to include purpose, camera and film, w e a t h e r, season, sampling technique, and equipment; and (3) precise replication of photographs. -
Depth of Field Lenses Form Images of Objects a Predictable Distance Away from the Lens. the Distance from the Image to the Lens Is the Image Distance
Depth of Field Lenses form images of objects a predictable distance away from the lens. The distance from the image to the lens is the image distance. Image distance depends on the object distance (distance from object to the lens) and the focal length of the lens. Figure 1 shows how the image distance depends on object distance for lenses with focal lengths of 35 mm and 200 mm. Figure 1: Dependence Of Image Distance Upon Object Distance Cameras use lenses to focus the images of object upon the film or exposure medium. Objects within a photographic Figure 2 scene are usually a varying distance from the lens. Because a lens is capable of precisely focusing objects of a single distance, some objects will be precisely focused while others will be out of focus and even blurred. Skilled photographers strive to maximize the depth of field within their photographs. Depth of field refers to the distance between the nearest and the farthest objects within a photographic scene that are acceptably focused. Figure 2 is an example of a photograph with a shallow depth of field. One variable that affects depth of field is the f-number. The f-number is the ratio of the focal length to the diameter of the aperture. The aperture is the circular opening through which light travels before reaching the lens. Table 1 shows the dependence of the depth of field (DOF) upon the f-number of a digital camera. Table 1: Dependence of Depth of Field Upon f-Number and Camera Lens 35-mm Camera Lens 200-mm Camera Lens f-Number DN (m) DF (m) DOF (m) DN (m) DF (m) DOF (m) 2.8 4.11 6.39 2.29 4.97 5.03 0.06 4.0 3.82 7.23 3.39 4.95 5.05 0.10 5.6 3.48 8.86 5.38 4.94 5.07 0.13 8.0 3.09 13.02 9.93 4.91 5.09 0.18 22.0 1.82 Infinity Infinite 4.775 5.27 0.52 The DN value represents the nearest object distance that is acceptably focused. -
With Its Focal Length Shorter Than That of the Normal Lens, the Wideangle Lenses Cover an Angle of View of 60° Or More. The
With its focal length shorter than that of the normal lens, the wideangle lenses cover an angle of view of 60° or more. The wideangle lens allows coverage of quite a broad view from a close camera position or photography in constricted areas. It can be effectively utilized in architectural exteriors and interiors and group shots. The wideangle lens is also suited for instant candid work which does not allow precise focusing on fast-moving subjects. Its profound depth of field compensates for inaccurate focusing. Another outstanding feature of the wideangle lens is exaggeration of perspective. This type of lens tends to give an interesting and dramatic effect which is more conspicuous, the wider the angle of lens. Today, "Wideangle Shooting" occupies a unique place in creative photography. Advanced photographers often emphasize the exaggerated perspective known as "wideangle distortion" to accomplish special creative effects. Nikon offers one of the widest selections of outstanding wideangle lenses to meet specific photographic requirements in wide field photography. L-15 20mm f/3.5 Nikl<or-UD Auto Code No. 108-01-105 The concept of optical construction is entirely new. Focal length: 20mm The lens consists of 11 elements in 9 groups, with Maximum aperture: 1 : 3.5 Lens construction: 11 elements in 9 groups back focus 1.87 times longer than the focal length. Picture angle: 94° Thus, the lens can be mounted on the camera with Distance scale: Graduated both in meters and feet up to the mirror in normal viewing position. (There is no 0.3m and 1ft f/3.5 - f / 22 need to lock up the mirror.) Aperture scale: Aperture diaphragm: Fully automatic With this lens, there is almost no need to focus, if Meter coupling prong: Integrated (fully open exposure metering) the diaphragm is closed down slightly.