Ecology and Persistence of Sylvatic Plague in Phillips County Montana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plague Manual for Investigation
Plague Summary Plague is a flea-transmitted bacterial infection of rodents caused by Yersinia pestis. Fleas incidentally transmit the infection to humans and other susceptible mammalian hosts. Humans may also contract the disease from direct contact with an infected animal. The most common clinical form is acute regional lymphadenitis, called bubonic plague. Less common clinical forms include septicemic, pneumonic, and meningeal plague. Pneumonic plague can be spread from person to person via airborne transmission, potentially leading to epidemics of primary pneumonic plague. Plague is immediately reportable to the New Mexico Department of Health. Plague is treatable with antibiotics, but has a high fatality rate with inadequate or delayed treatment. Plague preventive measures include: isolation of pneumonic plague patients; prophylactic treatment of pneumonic case contacts; avoiding contact with rodents and their fleas; reducing rodent harborage around the home; using flea control on pets; and, preventing pets from hunting. Agent Plague is caused by Yersinia pestis, a gram-negative, bi-polar staining, non-motile, non-spore forming coccobacillus. Transmission Reservoir: Wild rodents (especially ground squirrels) are the natural vertebrate reservoir of plague. Lagomorphs (rabbits and hares), wild carnivores, and domestic cats may also be a source of infection to humans. Vector: In New Mexico, the rock squirrel flea, Oropsylla montana, is the most important vector of plague for humans. Many more flea species are involved in the transmission of sylvatic (wildlife) plague. Mode of Transmission: Most humans acquire plague through the bites of infected fleas. Fleas can be carried into the home by pet dogs and cats, and may be abundant in woodpiles or burrows where peridomestic rodents such as rock squirrels (Spermophilus variegatus) have succumbed to plague infection. -
Biological Opinion
u,s. É.IAH & WILDIIFE SEEVICE [Jnited States Department of the Interior FISH AND WILDLIFE SERVICE Ecological Services 5353 Yellowstone Road, Suite 3084 Cheyenne, Wyoming 82009 In Reply Refer To: 06E13000-2015-F-0154 sEP 2 I 20þ Memorandum To: Assistant Regional Director, Ecological Services, U.S. Fish and Wildlife Service, Region 6, Lakewood, Colorado From: Field Supervisor, U.S Field Ofhce, Cheyenne, Wyoming Subject Final Intraservice Biological Opinion on the Issuance of a New Federal Rule to Designate the Black-Footed Ferret as a Non-Essential Experimental Population in the State of Wyoming in Accordance with Section 10O of the Endangered Species Act of 1973, as Amended This document transmits the U.S. Fish and Wildlife Service's (Service) final Biological Opinion (BO) on the issuance of a new federal rule to designate the black-footed ferret (Mustela nigripes) as a non-essential experimental population in the State of Wyoming in accordance with section 10O of the Endangered Species Act of 1973, as amended, 16 U.S.C. 1531 et seq. (ESA). Importantly, the overall effect of the proposed action will likely enhance the conservation and recovery of the species. This BO is based on the information provided in the Establishment of a Statewide Non-essential Experimental Population of Black-footed Ferrets in Wyoming (80 FR 19263, April 10, 2015), the Environmental Assessment for the Black-footed Ferret Wyoming Statewide 10O Rule, and fha Trrno îfìôO Ellnnlz (-1oo.onno Tlnnrrmanf 66Paar¡qlrrofi^- fho Rl^^L (tloo.onno Þrnnacc fnr fhp tltv Jutlv 4vvl ulvvl\ vrvqølrvv lJvvgruvrrt rwvvgru4Lrvrr ^fvr Luv urvv\ vrvsrsuvv r rvvvJJ rvr Luv Black-footed Ferret in Wyoming with Recommendations to the U.S. -
Human Plague Cases Reported Worldwide, Including in US
ID Snapshot, Infectious Diseases ID Snapshot: Human plague cases reported worldwide, including in U.S. by H. Cody Meissner M.D., FAAP The largest epidemic of plague occurred between 1348 and 1351 in Europe. Medieval ships returning from Asia were swarming with infected rats that climbed ashore once in port. The infection spread from rats to fleas and from fleas to rats. Infection spread to humans after large numbers of infected rats died, forcing hungry fleas to bite other hosts. Dressed in a gown made of heavy, waxed fabric, the plague doctor also wore goggles and a mask with a beak that contained pungent substances to purify the air and help relieve the stench. The person also carried a pointer or rod to keep patients at a distance. Illustration courtesy of the U.S. National Library of Medicine This pandemic of the Black Death (named after the purpuric lesions associated with disseminated intravascular coagulation) in the 14th century spread to every country in Europe killing one-third of the population. Doctors wore a costume (see illustration) when visiting patients. The mask and hat were intended to look like a deity to scare off the disease. The beak was filled with herbs and perfumes to offer protection against the unbearable stench. The long waxed raincoat and gloves were designed to prevent physical contact with a patient. One theory suggests the epidemic ended when the rodent reservoir in Europe (black rat) was replaced by the brown rat, which was not as prone to transmit the infection. Which one of the following statements about plague is not accurate? Copyright © 2016, The American Academy of Pediatrics ID Snapshot, Infectious Diseases a) Plague is a rare, life-threatening, flea-borne zoonosis caused by Yersinia pestis. -
Federal Register/Vol. 86, No. 120/Friday, June 25, 2021
Federal Register / Vol. 86, No. 120 / Friday, June 25, 2021 / Proposed Rules 33613 DEPARTMENT OF THE INTERIOR enter the Docket Number for this one of the methods listed in ADDRESSES. rulemaking: FWS–R2–ES–2020–0123. You must submit comments to http:// Fish and Wildlife Service Then, in the Search panel on the left www.regulations.gov before 11:59 p.m. side of the screen, under the Document (Eastern Time) on the date specified in 50 CFR Part 17 Type heading, click on the Proposed DATES. We will not consider hardcopy [Docket No. FWS–R2–ES–2020–0123; Rules link to locate this document. You comments not postmarked by the date FXES11130200000–212–FF02ENEH00] may submit a comment by clicking on specified in DATES. ‘‘Comment Now!’’ We will post your entire comment— RIN 2018–BD61 By hard copy: Submit by U.S. mail to: including your personal identifying Public Comments Processing, Attn: information—on http:// Endangered and Threatened Wildlife FWS–R2–ES–2020–0123, U.S. Fish and www.regulations.gov. If you provide and Plants; Revision of a Nonessential Wildlife Service, MS: PRB/3W, 5275 personal identifying information in your Experimental Population of Black- Leesburg Pike, Falls Church, VA 22041– comment, you may request at the top of Footed Ferrets (Mustela nigripes) in 3803. your document that we withhold this the Southwest We will post all comments on http:// information from public review. AGENCY: Fish and Wildlife Service, www.regulations.gov. This generally However, we cannot guarantee that we Interior. means that we will post any personal will be able to do so. -
Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus. -
Tamias Ruficaudus Simulans, Red-Tailed Chipmunk
Conservation Assessment for the Red-Tailed Chipmunk (Tamias ruficaudus simulans) in Washington Jennifer Gervais May 2015 Oregon Wildlife Institute Disclaimer This Conservation Assessment was prepared to compile the published and unpublished information on the red-tailed chipmunk (Tamias ruficaudus simulans). If you have information that will assist in conserving this species or questions concerning this Conservation Assessment, please contact the interagency Conservation Planning Coordinator for Region 6 Forest Service, BLM OR/WA in Portland, Oregon, via the Interagency Special Status and Sensitive Species Program website at http://www.fs.fed.us/r6/sfpnw/issssp/contactus/ U.S.D.A. Forest Service Region 6 and U.S.D.I. Bureau of Land Management Interagency Special Status and Sensitive Species Program Executive Summary Species: Red-tailed chipmunk (Tamias ruficaudus) Taxonomic Group: Mammal Management Status: The red-tailed chipmunk is considered abundant through most of its range in western North America, but it is highly localized in Alberta, British Columbia, and Washington (Jacques 2000, Fig. 1). The species is made up of two fairly distinct subspecies, T. r. simulans in the western half of its range, including Washington, and T. r. ruficaudus in the east (e.g., Good and Sullivan 2001, Hird and Sullivan 2009). In British Columbia, T. r. simulans is listed as Provincial S3 or of conservation concern and is on the provincial Blue List (BC Conservation Data Centre 2014). The Washington Natural Heritage Program lists the red-tailed chipmunk’s global rank as G2, “critically imperiled globally because of extreme rarity or because of some factor(s) making it especially vulnerable to extinction,” and its state status as S2 although the S2 rank is uncertain. -
Controlling Plague in Gunnison's Prairie Dogs
COLORADO PARKS & WILDLIFE Plague in Gunnison’s Prairie Dogs MAY 2014 Controlling Plague in Gunnison’s Prairie Dogs Plague, caused by a non-native bacteria and carried by fleas can kill all prairie dogs in a colony, leading to local extinctions that threaten the overall survival of the Gunnison’s prairie dog (Cynomys gunnisoni) in Colorado. Unmanaged plague has the potential to reduce populations of the Gunnison’s prairie dog to the point that a listing as federally endangered or threatened becomes more likely. Such a listing would not only underscore the need for additional conservation, it could also limit land uses for agriculture and recreation. The Gunnison’s prairie dog serves key roles in southwest Colorado’s biological landscapes: • A food source for many wildlife species including raptors and mammalian carnivores. • Prairie dog colonies serve as habitat for mountain plover, burrowing owl, badger, weasel, snakes and other wildlife species. Research Objectives Since the Gunnison’s prairie dog is an important species in the state’s ecosystem, Colorado Parks and Wildlife (CPW) has determined that controlling plague in this species is a priority conservation action. The CPW goal is to develop plague management tools to help manage and stabilize Gunnison’s prairie dog populations on public lands and in cooperation with willing landowners. CPW Plague Control Research Success The U.S. Geological Survey’s National Wildlife Health Center developed a sylvatic plague vaccine (SPV) and tested the vaccine in the lab in 2010. That laboratory research demonstrated that the vaccine is safe and protects prairie dogs from plague. Field trials are necessary to confirm these findings in the wild. -
Prairie Dog (Cynomys Ludovicianus) in Canada
Species at Risk Act Management Plan Series Management Plan for the Black-tailed prairie dog (Cynomys ludovicianus) in Canada Black-tailed Prairie Dog June 2009 About the Species at Risk Act Management Plan Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to manage species of special concern to prevent them from becoming endangered or threatened.” What is a species of special concern? Under SARA, a species of special concern is a wildlife species that could become threatened or endangered because of a combination of biological characteristics and identified threats. Species of special concern are included in the SARA List of Wildlife Species at Risk. What is a management plan? Under SARA, a management plan is an action-oriented planning document that identifies the conservation activities and land use measures needed to ensure, at a minimum, that a species of special concern does not become threatened or endangered. For many species, the ultimate aim of the management plan will be to alleviate human threats and remove the species from the List of Wildlife Species at Risk. The plan sets goals and objectives, identifies threats, and indicates the main areas of activities to be undertaken to address those threats. Management plan development is mandated under Sections 65–72 of SARA (http://www.sararegistry.gc.ca/approach/act/default_e.cfm). A management plan has to be developed within three years after the species is added to the List of Wildlife Species at Risk. -
Alarm Calling in Yellow-Bellied Marmots: I
Anim. Behav., 1997, 53, 143–171 Alarm calling in yellow-bellied marmots: I. The meaning of situationally variable alarm calls DANIEL T. BLUMSTEIN & KENNETH B. ARMITAGE Department of Systematics and Ecology, University of Kansas (Received 27 November 1995; initial acceptance 27 January 1996; final acceptance 13 May 1996; MS. number: 7461) Abstract. Yellow-bellied marmots, Marmota flaviventris, were reported to produce qualitatively different alarm calls in response to different predators. To test this claim rigorously, yellow-bellied marmot alarm communication was studied at two study sites in Colorado and at one site in Utah. Natural alarm calls were observed and alarm calls were artificially elicited with trained dogs, a model badger, a radiocontrolled glider and by walking towards marmots. Marmots ‘whistled’, ‘chucked’ and ‘trilled’ in response to alarming stimuli. There was no evidence that either of the three call types, or the acoustic structure of whistles, the most common alarm call, uniquely covaried with predator type. Marmots primarily varied the rate, and potentially a few frequency characteristics, as a function of the risk the caller experienced. Playback experiments were conducted to determine the effects of call type (chucks versus whistles), whistle rate and whistle volume on marmot responsiveness. Playback results suggested that variation in whistle number/rate could communicate variation in risk. No evidence was found of intraspecific variation in the mechanism used to communicate risk: marmots at all study sites produced the same vocalizations and appeared to vary call rate as a function of risk. There was significant individual variation in call structure, but acoustic parameters that were individually variable were not used to communicate variation in risk. -
Capsaicin-Treated Seed As a Squirrel Deterrent at Birdfeeders
Capsaicin-treated seed as a squirrel deterrent at birdfeeders Paul D. Curtis, Elizabeth D. Rowland, and Gwen B. Curtis, Department of Natural Resources, Cornell University, Ithaca , NY 14853 , USA Joseph A. Dunn, Snyder Seed Corporation, 255 Great Arrow Ave. , Buffalo , New York 14207, USA Abstract: Eastern gray squirrels (Sciurus carolinensis) are considered to be a pest by many bird lovers because they take significant quantities of seed from birdfeeders. None of the available methods of protecting birdseed against squirrels is completely effective. We assessed the efficacy of treating birdseed with capsaicin oleoresin as a means of deterring squirrels . Consumption of treated and untreated whole, black-oil sunflower seed was compared by carrying out one-choice feeding trials at 3 sites near Ithaca, New York, from 11 May to 24 June 1999. The heat strength of the treated seed was 40,000 Scoville Heat Units (SHUs) (2,424 ppm) on the shell and 2,000 SHUs (121 ppm) on the heart. At each site, we provided 600 g of seed at a feeding station for one 3-hr session each day, and recorded the weight of seed consumed. Observations of feeding behavior by squirrels, birds and Eastern chipmunks (Tamias striatus) were recorded throughout the 3-hr session on 2 days per week at each site during most weeks. Untreated seed was provided in weeks 1, 2, and 4; capsaicin-treated seed was offered in weeks 3, 5, and 6. We concluded that treatment with capsaicin significantly reduced both the amount of seed taken by squirrels and the total time squirrels spent feeding. -
Zeitschrift Für Säugetierkunde
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Investigations on the Sciurid manus I. Some new taxonomic characters and their importance in the Classification of squirrels By Charles A. Long and Joseph Captain Receipt of Ms. 28. 1. 1973 Introduction The structure of the manus is important in the Classification of the Sciuridae. Some of the characters of the manus that distinguish high taxonomic groups result perhaps from evolutionary convergence, but others are conservative and useful. Some trends in form of the manus are irreversible, and therefore reveal phylogenetic information. The characters of the forefoot augment those of the teeth and baculum in sciurid Classification. Materials and methods The forefoot of specimens in Nearctic Eutamias (minimus 32, amoenusl, dorsalis2, merriamil, ruficaudus 1, quadrivittatus 2, umbrinus9, ruficaudusX), Tamias striatus 86, Marmota (monaxS, flaviventris 2), Spermophilus (tridecemlineatus 34, spilosoma 1, mexicanus 1, jranklinii 5, lateralis 9, tereticaudus 3, variegatus 3, armatus 3, richardsonii 8, beldingi 1, townsendii 1, washingtonii 1, beecheyi 1, undulatus \), Ammospermophilus (leucurus 1, harrisii 3), Cynomys (leucurus 3, ludovicianus \), Tamiasciurus (douglasii 1, hudsonicus 70), Sciurus (niger 24, carolinensis AI), and Glaucomys (sabrinus 6, volans 22), as well as three Oriental species (Petaurista lena 1; P. grandis 1; Sciurus Iis 1) and one South American species (Sciurus granatensis 2) was examined of preserved skins in the University of Wisconsin-Stevens Point -
The Use of Wild Carnivore Serology in Determining Patterns of Plague Activity in Rodents in California Charles R
THE USE OF WILD CARNIVORE SEROLOGY IN DETERMINING PATTERNS OF PLAGUE ACTIVITY IN RODENTS IN CALIFORNIA CHARLES R. SMITH and BERNARD C. NELSON, Calffornla Department of Health Services, Vector Biology and Control Branch, Redding. California 96001, and Berkeley. California 94704 ALLANM. BARNES, Chief, Plague Branch, U.S. Department of Health and Human Services. Centers for Disease Control, Ft. Collins, Colorado 80522 ABSTRACT: Carnivores obtain plague infection through ingestion of infected rodents or rabbits or via flea bite. Most are resistant to infection, show little or no symptoms, and produce antibodies to Yersinia pestis which may persist for several months . Consequently, carnivores can be used as serolo gical plague sentinels using the specific passive or indirect hemagglutination test in the laboratory. A carnivore serology program for plague detection began in California in 1974. The program is a cooperative effort incorporating state and federal vector-borne disease units and state and federal predator animal control personnel. The program has proven to be an important tool in the overall statewide plague surveillance program of the California Department of Health Services, and has been effective in detecting plague over broad geographical areas of the state, as well as in areas hereto fore unknown to experience plague activity. Carnivore serology has also proven useful in helping to delineate the extent of plague epizootics, and has given insight into the patterns of enzootic plague among wild rodent populations. INTRODUCTION Bubonic plague is a disease of rodents caused by the bacterium Yersinia pestis, which exists in widespread discontinuous foci in portions of Africa, Asia, and the Americas.