SPHINGOSINE KINASE INHIBITION AMELIORATES CHRONIC HYPOPERFUSION-INDUCED WHITE MATTER LESIONS 112 4.1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

SPHINGOSINE KINASE INHIBITION AMELIORATES CHRONIC HYPOPERFUSION-INDUCED WHITE MATTER LESIONS 112 4.1 Introduction SPHINGOSINE KINASE INHIBITION AMELIORATES CHRONIC HYPOPERFUSION- INDUCED WHITE MATTER LESIONS YANG YING (B.Sc. (Hons.), Zhejiang University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2016 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _________________ Yang Ying 20 January 2016 I ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratitude to my supervisor Prof. Peter Wong Tsun Hon for their continuous support during the past five years of my PhD study. Without his guidance and help, it is impossible for me to fulfil my research work and complete this thesis. The scientific advice and insightful discussions he provided about my research benefit me greatly. His patience, motivation and immense knowledge always inspire me greatly. Prof Wong has been so supportive and has given me much freedom to pursue various research ideas without objection. Besides, he provided me many opportunities to attend workshops, International conferences, which has been very helpful in broadening my vision. I’m also extremely grateful to my Co-supervisor Dr. Lai Kim Peng Mitchell for his enlightening ideas, invaluable scientific advice and continuous support. His enthusiasm, extraordinary kindness and patience impressed me a lot. I’m also very grateful for introducing me collaborators and always encourage me when I met with difficulties. This thesis could not have been written without his valuable suggestions. I would like to extend my heartfelt gratitude to all the lab members, past and present, for their help along these years. My sincere appreciation first goes to Mrs. Ting Wee Lee for her great work and patient assistance on administrative stuffs, such as reagents ordering, paper work filing and keeping the lab tidy and organized. Also I would like to express my gratitude to Ms Wu Qi, Mr Zhao Heng and Ms Chan Sujing for their guidance and technical support in the early years of my PhD as well as their warm II friendship. Genuine appreciation to Ms Zhao Huiand Ms Nur-Ezan Mohamed for their warm friendship. Special thanks to Dr. Federico Tesio Torta, and Dr. Pradeep Narayanaswamy for their technical support and scientific suggestions on the collaborations in lipidomics analysis. Many thanks to my friends for their constant encouragement thoughout these years. Finally, I owe my gratitude to my family members. Their love and encouragement always support me to overcome difficulties. III TABLE OF CONTENTS SUMMARY ................................................................................................ VII LIST OF TABLES .......................................................................................IX LIST OF FIGURES ...................................................................................... X ABBREVIATIONS .................................................................................... XII PUBLICATIONS ....................................................................................... XV CHAPTER 1 INTRODUCTION 1 1.1 Vascular cognitive impairment .................................................. 1 1.1.1 Definition of VCI ................................................................... 1 1.1.2 Vascular neuropathological substrates ................................... 1 1.1.3 Risk factors ............................................................................ 5 1.1.4 Diagnosis ............................................................................... 7 1.1.5 Therapeutic implications ........................................................ 8 1.1.6 Symptomatic treatment .......................................................... 9 1.2 Mechanisms of white matter lesions ....................................... 10 1.2.1 Composition of cerebral white matters ................................ 11 1.2.2 Pathophysiology of WML ................................................... 26 1.2.3 Animal models of WML ...................................................... 36 1.3 Sphingosine-1-phosphate: A Bioactive Sphingolipid ............ 40 1.3.1 S1P synthesis and degradation ............................................. 40 1.3.2 S1P regulating cell fate: an Intracellular Mediator: ............. 48 1.3.3 S1P receptors ....................................................................... 49 1.3.4 S1P receptors in the brain .................................................... 49 1.3.5 SphK/S1P/S1PR signaling in regulation oligodendroglial lineage cells ............................................................................................ 50 1.3.6 SphK/S1P/S1PR signaling in hypoxia/ischemia .................. 52 1.4 Research rationale and objectives ........................................... 53 CHAPTER 2 METHOD AND MATERIAL ......................... 55 2.1 Animal ..................................................................................... 55 2.2 Bilateral common carotid artery stenosis model (BCAS) ....... 55 2.3 Cerebral blood flow measurement ........................................... 57 2.4 Barnes maze ............................................................................. 58 2.4.1 Equipment and field setup ................................................... 58 2.4.2 Adaptation period ................................................................ 60 2.4.3 Spatial acquisition phase ...................................................... 61 IV 2.4.4 Probe trial ............................................................................. 61 2.4.5 Data analysis ........................................................................ 62 2.5 SKI-II Treatment ..................................................................... 63 2.6 Coronal brain slice Preparation ............................................... 63 2.6.1 Reagent ................................................................................ 63 2.6.2 Procedure ............................................................................. 63 2.7 White matter tissue isolation ................................................... 64 2.8 Kluver-Barrera staining ........................................................... 65 2.8.1 Reagent ................................................................................ 65 2.8.2 Procedure ............................................................................. 65 2.9 Immunofluorescence staining .................................................. 66 2.9.1 Reagent ................................................................................ 66 2.9.2 Procedure ............................................................................. 66 2.10 Microscopy .............................................................................. 66 2.11 Western blot analysis ............................................................... 67 2.11.1 Reagent ............................................................................. 67 2.11.2 Sample preparation ........................................................... 67 2.11.3 Western blot ..................................................................... 67 2.12 Lipid extraction ....................................................................... 68 2.12.1 Reagent ............................................................................. 68 2.12.2 Procedure .......................................................................... 69 2.13 Lipid analysis ........................................................................... 69 2.13.1 Reagent ............................................................................. 69 2.13.2 Phospholipid and sphingolipid ......................................... 69 2.13.3 S1P ................................................................................... 70 2.13.4 Cholesterol ....................................................................... 71 2.13.5 Lipidomics data processing .............................................. 71 2.14 Primary oligodendroglia lineage cell culture .......................... 71 2.14.1 Reagent ............................................................................. 71 2.14.2 Equipment setup ............................................................... 72 2.14.3 Dissection and plating and culture of neonatal rat cortices 72 2.14.4 OPC isolation and culture ................................................ 73 2.14.5 Chemical induction of hypoxia in vitro ........................... 74 2.15 Quantification of immunofluorescence staining ..................... 75 V 2.16 Statistical analysis ................................................................... 75 CHAPTER 3 THE LIPIDOME OF WHITE MATTER LESIONS IN MOUSE BRAIN INDUCED BY GLOBAL CHRONIC HYPOPERFUSION 80 3.1 Introduction ............................................................................. 80 3.2 Results ..................................................................................... 82 3.2.1 BCAS causes global CBF decrease and hypoxia in mouse brain 82 3.2.2 Selective White matter lesions induced by hypoperfusion .. 85 3.2.3 Cognitive impairment in BCAS mice .................................. 89 3.2.4 Lipids alterations .................................................................. 93 3.3 Discussion .............................................................................
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • Synthesis of Lysophospholipids
    Molecules 2010, 15, 1354-1377; doi:10.3390/molecules15031354 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis of Lysophospholipids Paola D’Arrigo 1,2,* and Stefano Servi 1,2 1 Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy 2 Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory", Politecnico di Milano and Università degli Studi dell'Insubria, Via Mancinelli 7, 20131 Milano, Italy * Author to whom correspondence should be addressed; E-Mail: paola.d’[email protected]. Received: 17 February 2010; in revised form: 4 March 2010 / Accepted: 5 March 2010 / Published: 8 March 2010 Abstract: New synthetic methods for the preparation of biologically active phospholipids and lysophospholipids (LPLs) are very important in solving problems of membrane–chemistry and biochemistry. Traditionally considered just as second-messenger molecules regulating intracellular signalling pathways, LPLs have recently shown to be involved in many physiological and pathological processes such as inflammation, reproduction, angiogenesis, tumorogenesis, atherosclerosis and nervous system regulation. Elucidation of the mechanistic details involved in the enzymological, cell-biological and membrane-biophysical roles of LPLs relies obviously on the availability of structurally diverse compounds. A variety of chemical and enzymatic routes have been reported in the literature for the synthesis of LPLs: the enzymatic transformation of natural glycerophospholipids (GPLs) using regiospecific enzymes such as phospholipases A1 (PLA1), A2 (PLA2) phospholipase D (PLD) and different lipases, the coupling of enzymatic processes with chemical transformations, the complete chemical synthesis of LPLs starting from glycerol or derivatives. In this review, chemo- enzymatic procedures leading to 1- and 2-LPLs will be described.
    [Show full text]
  • Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein
    doi:10.1016/j.jmb.2005.10.031 J. Mol. Biol. (2006) 355, 224–236 Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein Tomi T. Airenne†, Heidi Kidron†, Yvonne Nymalm, Matts Nylund Gun West, Peter Mattjus and Tiina A. Salminen* Department of Biochemistry Glycolipids participate in many important cellular processes and they are and Pharmacy, A˚ bo Akademi bound and transferred with high specificity by glycolipid transfer protein University, Tykisto¨katu 6A (GLTP). We have solved three different X-ray structures of bovine GLTP at FIN-20520 Turku, Finland 1.4 A˚ , 1.6 A˚ and 1.8 A˚ resolution, all with a bound fatty acid or glycolipid. The 1.4 A˚ structure resembles the recently characterized apo-form of the human GLTP but the other two structures represent an intermediate conformation of the apo-GLTPs and the human lactosylceramide-bound GLTP structure. These novel structures give insight into the mechanism of lipid binding and how GLTP may conformationally adapt to different lipids. Furthermore, based on the structural comparison of the GLTP structures and the three-dimensional models of the related Podospora anserina HET-C2 and Arabidopsis thaliana accelerated cell death protein, ACD11, we give structural explanations for their specific lipid binding properties. q 2005 Elsevier Ltd. All rights reserved. Keywords: crystal structure; homology modeling; conformational change; *Corresponding author cavity; fluorescence Introduction to the diverse roles of glycolipids in the cell, GLTP could potentially function as a modulator
    [Show full text]
  • Lysophosphatidic Acids and Their Substrate Lysophospholipids In
    www.nature.com/scientificreports OPEN Lysophosphatidic acids and their substrate lysophospholipids in cerebrospinal fuid as objective Received: 5 October 2018 Accepted: 14 June 2019 biomarkers for evaluating the Published: xx xx xxxx severity of lumbar spinal stenosis Kentaro Hayakawa1, Makoto Kurano2, Junichi Ohya1, Takeshi Oichi1, Kuniyuki Kano3, Masako Nishikawa2, Baasanjav Uranbileg2, Ken Kuwajima4, Masahiko Sumitani4,5, Sakae Tanaka1, Junken Aoki 3, Yutaka Yatomi2 & Hirotaka Chikuda6 Lysophospholipids (LPLs) are known to have potentially important roles in the initiation and maintenance of neuropathic pain in animal models. This study investigated the association between the clinical severity of lumbar spinal stenosis (LSS) and the cerebrospinal fuid (CSF) levels of LPLs, using human samples. We prospectively identifed twenty-eight patients with LSS and ffteen controls with idiopathic scoliosis or bladder cancer without neurological symptoms. We quantifed LPLs from CSF using liquid chromatography-tandem mass spectrometry. We assessed clinical outcome measures of LSS (Neuropathic Pain Symptom Inventory (NPSI) and Zurich Claudication Questionnaire (ZCQ)) and categorized patients into two groups according to their severity. Five species of lysophosphatidic acid (LPA), nine species of lysophosphatidylcholine (LPC), and one species of lysophosphatidylinositol (LPI) were detected. The CSF levels of all species of LPLs were signifcantly higher in LSS patients than controls. Patients in the severe NPSI group had signifcantly higher LPL levels (three species of LPA and nine species of LPC) than the mild group. Patients in the severe ZCQ group also had signifcantly higher LPL levels (four species of LPA and nine species of LPC). This investigation demonstrates a positive correlation between the CSF levels of LPLs and the clinical severity of LSS.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease
    Research Articles: Neurobiology of Disease Fingolimod rescues demyelination in a mouse model of Krabbe's disease https://doi.org/10.1523/JNEUROSCI.2346-19.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2346-19.2020 Received: 30 September 2019 Revised: 17 December 2019 Accepted: 21 January 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Be´chet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Fingolimod rescues demyelination in a mouse model of Krabbe’s disease 2 Sibylle Béchet, Sinead O’Sullivan, Justin Yssel, Steven G. Fagan, Kumlesh K. Dev 3 Drug Development, School of Medicine, Trinity College Dublin, IRELAND 4 5 Corresponding author: Prof. Kumlesh K. Dev 6 Corresponding author’s address: Drug Development, School of Medicine, Trinity College 7 Dublin, IRELAND, D02 R590 8 Corresponding author’s phone and fax: Tel: +353 1 896 4180 9 Corresponding author’s e-mail address: [email protected] 10 11 Number of pages: 35 pages 12 Number of figures: 9 figures 13 Number of words (Abstract): 216 words 14 Number of words (Introduction): 641 words 15 Number of words (Discussion): 1475 words 16 17 Abbreviated title: Investigating the use of FTY720 in Krabbe’s disease 18 19 Acknowledgement statement (including conflict of interest and funding sources): This work 20 was supported, in part, by Trinity College Dublin, Ireland and the Health Research Board, 21 Ireland.
    [Show full text]
  • Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S
    Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S. Radin, Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan ABSTRACT and sulfatides contain NFA and tIFA, The metabolism of the fatty acid moieties saturated and unsaturated; the gangliosides, of brain cerebrosides, sulfatides, and however, contain only NFA in which there are gangliosides is reviewed and discussed. only traces of unsaturated acids. In the cere- The methodology involved in the isolation t)rosides and sulfatides there are two clusters of the fatty acids is described briefly. It of FA: those around 18 carbons long and those seems clear now that most of these acids around 24 carbons long. In the gangliosides are made by chain elongation of inter- there is only one cluster, centering around 18:0, mediate length fatty acids by addition of with negligible amounts of 22:0 and 24:0. acetate residues. The unsaturated acids Other points of contrast between gangliosides are made by desaturation of the inter- and the other two can be made: the former mediate length acids (palmitic, heptade- occurs primarily in brain gray matter, the canoic, stearic) followed by chain elonga- latter are primarily in white. The former tion. The hydroxy acids are made directly has glucose attached to the ceramide residue, from the corresponding nonhydroxy acids, the latter have galactose. The former has saturated, unsaturated, and odd-numbered. only traces of odd-numbered FA; the latter All the hydroxy acids undergo oxidative can contain considerable amounts of C~ and decarboxylation to yield fatty acids con- C2.~ FA. Further differences, particularly in taining one less carbon atom.
    [Show full text]
  • The Role of Fatty Acids in Ceramide Pathways and Their Influence On
    International Journal of Molecular Sciences Review The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review Andressa Reginato 1,2,3,*, Alana Carolina Costa Veras 2,3, Mayara da Nóbrega Baqueiro 2,3, Carolina Panzarin 2,3, Beatriz Piatezzi Siqueira 2,3, Marciane Milanski 2,3 , Patrícia Cristina Lisboa 1 and Adriana Souza Torsoni 2,3,* 1 Biology Institute, State University of Rio de Janeiro, UERJ, Rio de Janeiro 20551-030, Brazil; [email protected] 2 Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; [email protected] (A.C.C.V.); [email protected] (M.d.N.B.); [email protected] (C.P.); [email protected] (B.P.S.); [email protected] (M.M.) 3 Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil * Correspondence: [email protected] (A.R.); [email protected] (A.S.T.) Abstract: Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy Citation: Reginato, A.; Veras, A.C.C.; balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition Baqueiro, M.d.N.; Panzarin, C.; to targets for the development of new drugs that can be used in humans to decrease body weight.
    [Show full text]
  • The Role of Lipids in the Inception, Maintenance and Complications of Dengue Virus Infection
    www.nature.com/scientificreports OPEN The role of lipids in the inception, maintenance and complications of dengue virus infection Received: 12 April 2018 Carlos Fernando Odir Rodrigues Melo 1, Jeany Delafori1, Mohamad Ziad Dabaja1, Accepted: 25 June 2018 Diogo Noin de Oliveira1, Tatiane Melina Guerreiro1, Tatiana Elias Colombo2, Published: xx xx xxxx Maurício Lacerda Nogueira 2, Jose Luiz Proenca-Modena3 & Rodrigo Ramos Catharino1 Dengue fever is a viral condition that has become a recurrent issue for public health in tropical countries, common endemic areas. Although viral structure and composition have been widely studied, the infection phenotype in terms of small molecules remains poorly established. This contribution providing a comprehensive overview of the metabolic implications of the virus-host interaction using a lipidomic- based approach through direct-infusion high-resolution mass spectrometry. Our results provide further evidence that lipids are part of both the immune response upon Dengue virus infection and viral infection maintenance mechanism in the organism. Furthermore, the species described herein provide evidence that such lipids may be part of the mechanism that leads to blood-related complications such as hemorrhagic fever, the severe form of the disease. Dengue virus (DENV) is an arbovirus transmitted by mosquitoes of the genus Aedes, such as Aedes aegypti and Aedes albopictus. DENV is associated with outbursts of febrile diseases in the tropics since the 80’s1. Te large number of DENV-infected patients every year, estimated by the World Health Organization in 390 million, makes DENV the most hazardous arbovirus in the world. DENV is a series of enveloped viruses belonging to the family Flaviviridae, genus Flavivirus, which are classifed in four closely related and antigenically distinct serotypes (DENV-1, DENV-2, DENV-3 and DENV-4).
    [Show full text]
  • The Antipsychotic Risperidone Alters Dihydroceramide and Ceramide Composition and Plasma Membrane Function in Leukocytes in Vitro and in Vivo
    International Journal of Molecular Sciences Article The Antipsychotic Risperidone Alters Dihydroceramide and Ceramide Composition and Plasma Membrane Function in Leukocytes In Vitro and In Vivo Alberto Canfrán-Duque 1 , Óscar Pastor 2,3 , David García-Seisdedos 1, Yessenia L. Molina 1, Bohdan Babiy 2, Milagros Lerma 1, Carmen Sánchez-Castellano 4, Javier Martínez-Botas 1,3 , Diego Gómez-Coronado 1,3, Miguel A. Lasunción 1,3, Alfonso J. Cruz-Jentoft 4,* and Rebeca Busto 1,3,* 1 Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; [email protected] (A.C.-D.); [email protected] (D.G.-S.); [email protected] (Y.L.M.); [email protected] (M.L.); [email protected] (J.M.-B.); [email protected] (D.G.-C.); [email protected] (M.A.L.) 2 Servicio de Bioquímica-Clínica, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; [email protected] (Ó.P.); [email protected] (B.B.) 3 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain 4 Servicio de Geriatría, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; [email protected] * Correspondence: [email protected] (A.J.C.-J.); [email protected] (R.B.) Citation: Canfrán-Duque, A.; Pastor, Ó.; García-Seisdedos, D.; Molina, Y.L.; Abstract: Atypical or second-generation antipsychotics are used in the treatment of psychosis and Babiy, B.; Lerma, M.; behavioral problems in older persons with dementia. However, these pharmaceutical drugs are Sánchez-Castellano, C.; associated with an increased risk of stroke in such patients.
    [Show full text]
  • Sphingosine Kinases and Their Metabolites Modulate Endolysosomal Trafficking in Photoreceptors
    JCB: Report Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors Ikuko Yonamine,1,2 Takeshi Bamba,3 Niraj K. Nirala,1,2 Nahid Jesmin,1,2 Teresa Kosakowska-Cholody,4 Kunio Nagashima,5 Eiichiro Fukusaki,3 Jairaj K. Acharya,4 and Usha Acharya1,2 1Program in Gene Function and Expression and 2Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 3Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan 4Laboratory of Cell and Developmental Signaling, National Cancer Institute, Frederick, MD 21702 5Electron Microscopy Facility and Image Analysis Laboratory, Science Applications International Corporation–Frederick, Frederick, MD 21702 Downloaded from http://rupress.org/jcb/article-pdf/192/4/557/1349436/jcb_201004098.pdf by guest on 29 September 2021 nternalized membrane proteins are either transported trafficking of the G protein–coupled receptor Rhodopsin to late endosomes and lysosomes for degradation or and the light-sensitive transient receptor potential (TRP) I recycled to the plasma membrane. Although proteins channel by modulating the levels of dihydrosphingosine 1 involved in trafficking and sorting have been well studied, phosphate (DHS1P) and sphingosine 1 phosphate (S1P). far less is known about the lipid molecules that regulate the An increase in DHS1P levels relative to S1P leads to the intracellular trafficking of membrane proteins. We studied enhanced lysosomal degradation of Rhodopsin and TRP the function of sphingosine kinases and their metabolites and retinal degeneration in wild-type photoreceptors. in endosomal trafficking using Drosophila melanogaster Our results suggest that sphingosine kinases and their photoreceptors as a model system. Gain- and loss-of- metabolites modulate photoreceptor homeostasis by influ- function analyses show that sphingosine kinases affect encing endolysosomal trafficking of Rhodopsin and TRP.
    [Show full text]
  • Novel Receptor Independent Mechanism: Evidence for a − (PAF) and Lysopaf Via a PAF-Receptor in Response to Platelet-Activating
    Mouse and Human Eosinophils Degranulate in Response to Platelet-Activating Factor (PAF) and LysoPAF via a PAF-Receptor− Independent Mechanism: Evidence for a This information is current as Novel Receptor of October 1, 2021. Kimberly D. Dyer, Caroline M. Percopo, Zhihui Xie, Zhao Yang, John Dongil Kim, Francis Davoine, Paige Lacy, Kirk M. Druey, Redwan Moqbel and Helene F. Rosenberg J Immunol 2010; 184:6327-6334; Prepublished online 26 Downloaded from April 2010; doi: 10.4049/jimmunol.0904043 http://www.jimmunol.org/content/184/11/6327 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2010/09/09/jimmunol.090404 Material 3.DC1 References This article cites 70 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/184/11/6327.full#ref-list-1 Why The JI? Submit online. by guest on October 1, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]