Heparin Coating and Cardiotomy Suction in Cardiopulmonary Bypass

Total Page:16

File Type:pdf, Size:1020Kb

Heparin Coating and Cardiotomy Suction in Cardiopulmonary Bypass Heparin Coating and Cardiotomy Suction in Cardiopulmonary Bypass Staffan Svenmarker Department of Surgical and Perioperative Science Umeå University, Umeå, Sweden 2003 Umeå University Medical Dissertations New Series No. 855 - ISSN 0346-6612 – ISBN 91-7305-523-9 From the Department of Surgical and Perioperative Science Umeå University, Umeå, Sweden Heparin Coating and Cardiotomy Suction in Cardiopulmonary Bypass Staffan Svenmarker Fakultetsopponent: Professor Jarle Vaage Department of Surgery, Ullevål University Hospital University of Oslo, Norway Umeå 2003 Copyright 2003 Staffan Svenmarker ISBN 91-7305-523-9 Printed by Print & Media Umeå University, Sweden Hur förena tro med vetande? Frågan lär ju vara viktig. Kräva starkt arbetande, mycket ivrigt letande. Dumbom, något oförsiktig. Svarar: ”jo, när tron är riktig, är den vetande”. Gustav Fröding To my family: Barbro, Pontus, Anna and Magnus Table of Contents Abstract 7 Abbreviations 8 List of papers 9 Introduction Historical aspects of cardiopulmonary bypass 11 Introductory remarks to cardiopulmonary bypass 12 The systemic inflammatory response syndrome 14 Cardiopulmonary bypass and clinical outcome 17 The role of heparin coating 17 The role of cardiotomy suction 19 Cardiopulmonary bypass and the brain 20 Memory dysfunction 22 The protein S100 23 Aim of the investigations 27 Material & Methods Characteristics of population 28 General clinical management 30 Conduct of cardiopulmonary bypass 30 General assessments and measurements 31 Statistics 34 Results HCC and general clinical outcome 35 HCC and renal function 37 Effects of different types of HCC 37 Effect of HCC and PSB-retransfusion on release of protein S100B 37 Effect of HCC and retransfusion of PSB on memory function 38 Recycling of PSB: effects of free plasma haemoglobin 40 Recycling of PSB: general inflammatory effects 40 General Discussion 42 Conclusions 50 Acknowledgements 51 Populärvetenskaplig sammanfattning på svenska 52 References 54 Abstract Heparin Coating and Cardiotomy Suction in Cardiopulmonary Bypass Staffan Svenmarker Department of Surgical and Perioperative Science, Umeå University, Umeå Sweden. Abstract The present thesis addresses various means of reducing inflammatory responses associated with cardiopulmonary bypass (CPB) and retransfusion of pericardial suction blood (PSB) during cardiac surgery. Four (I-IV) prospective randomised controlled clinical trials comprising 475 patients were performed in the following areas: effects of heparin coating on measures of clinical outcome and memory function (I, II), inflammatory reactions in PSB and its systemic effects after retransfusion using cardiotomy suction or cell salvage (III) and effects of retransfusion of PSB on memory function and release patterns of protein S100B (IV). The use of heparin coated CPB-circuits was associated with a decrease of postoperative blood loss (I, II), transfusion requirements (II), shorter stay in hospital (I) decreased postoperative ventilator time (I), lower incidences of atrial fibrillation (II) and neurological deviations (I), reduction in releases of protein S100B (I, II) and lower postoperative creatinine elevation (I, II). PSB contained high concentrations of cytokines, complements, myeloperoxidase, free plasma haemoglobin and protein S100B (III, IV). Retransfusion using cardiotomy suction increased the systemic concentrations of free plasma haemoglobin and protein S100B, whereas retransfusion using cell salvage caused no detectable systemic effects (III, IV). CPB was associated with a small but significant release of protein S100B, despite elimination of PSB-contained protein S100B using cell salvage (IV). Subtle signs of impaired memory function were identified that were not associated with the use of heparin coated CPB-circuits (I, II) or retransfusion of PSB (IV). Key words: cardiopulmonary bypass, oxygenators, heparin, S100 proteins, blood loss, haemostasis, memory, outcome and process assessment. 7 Abbreviations Abbreviations ACT Activated Clotting Time BCI Brain Cell Injury BMI Body Mass Index CABG Coronary Artery Bypass Grafting CBAS Carmeda BioActive Surface CNS Central Nervous System CPB Cardiopulmonary Bypass CR Cardiotomy Reservoir CRP C Reactive Protein CS Cell Saver CT Computerised Tomography ECG Electrocardiogram ELISA Enzyme-Linked Immunosorbent Assay HCC Heparin Coated Circuits IL Interleukin LOS Length of Stay in Hospital MAC Membrane Attack Complex MAP Mean Arterial Pressure MODS Multi Organ Dysfunction Syndrome MPO Myeloperoxidase OFF-PUMP Cardiac surgery without heart-lung machine PHb Plasma Haemoglobin PMN Polymorphonuclear PSB Pericardial Suction Blood SCADs Small Capillary Arterial Dilatations SD Standard Deviation SEM Standard Error of the Mean SIRS Systemic Inflammatory Response Syndrome TCC Terminal Complement Complex TNF Tumour Necrosis Factor 8 Original Papers This thesis is based on the following papers referred to by their Roman numerals: I. Svenmarker S, Sandström E, Karlsson T, Jansson E, Häggmark S, Lindholm R, Appelblad M, Åberg, T. Clinical effects of the heparin coated surface in cardiopulmonary bypass. Eur J Cardiothorac Surg 1997; 11(5): 957-964. II. Svenmarker S, Sandström E, Karlsson T, Häggmark S, Jansson E, Appelblad M, Lindholm R, Åberg, T. Neurological and general outcome in low-risk coronary artery bypass patients using heparin coated circuits. Eur J Cardiothorac Surg 2001; 19(1): 47-53. III. Svenmarker S, Engström KG. The inflammatory response to recycled pericardial suction blood and the influence of cell saving. Scand Cardiovasc J 2003; 37(3): 158-164. IV. Svenmarker S, Engström KG, Karlsson T, Jansson E, Lindholm R, Åberg, T. Influence of pericardial suction blood retransfusion on memory function and release of protein S100B. Submitted. Reprints of original papers were made with approval from the publisher. 9 10 Introduction Introduction Historical Aspects of Cardiopulmonary Bypass The invention of the heart-lung machine is attributed to John Gibbon, Jr. His wife, Mary Gibbon was the first perfusionist. Dr. Gibbon invented the heart-lung machine in his laboratory at the Bullfinch Building of the Massachusetts General Hospital in the 1930’s. Originally, it was designed to serve as life support during Trendelenburg operations and pulmonary embolectomy - at that time associated with nearly 100% mortality. In 1953, the heart-lung machine was introduced in cardiac surgery, when Gibbon successfully closed an atrial septum defect in an 18-year-old woman [1]. Clarence Crafoord performed the second heart operation ever with the aid of a heart-lung machine in Sweden 1954 [2]. Inge Rygg and Erik Kyvsgaard developed a new type of integrated soft-shell bubble oxygenator in Denmark in 1956 [3]. The main body of work for the evolution of extracorporeal circulation during the 1950’s took place at the Mayo Clinic by John Kirklin and by C. Walton Lillehei at the University of Minnesota [4-6]. Kirklin performed a series of cardiac interventions using a modified Gibbon heart-lung machine with promising results [4]. However, the equipment was complex and difficult to operate and maintain. C. Walton Lillehei had at the time introduced the bubble oxygenator [5]. The device represented a tremendous step towards simplicity, making the process of extracorporeal circulation more accessible. From 1955 to 1966, C. Walton Lillehei operated on more than 2500 patients with the help of bubble oxygenators [6]. The first disposable bubble oxygenator with integrated heat exchanger came in 1955 by DeWall and colleagues [7]. Today, bubble oxygenators have been replaced by membrane oxygenation, which first was described by Wilhelm Kolf [8] in 1956 and introduced clinically by Frank Gerbode [9] and Arnold J. Lande [10] in 1966. Despite nearly half a century since the introduction of cardiopulmonary bypass (CPB) in cardiac surgery we are still confronted with similar challenges to those which occupied the pioneers. Gibbon was aware of the importance and possible deleterious effects of the contact between blood and the foreign environment represented by the extracorporeal circuit. 11 Introduction “The surface contact with blood should be inert, friendly, one might say, to the blood passing along, and this passage of blood should provide the patient with adequate circulation of undamaged properly oxygenated blood and a means for its release of carbon dioxide” [11]. The present thesis addresses a related issue to describe ways of how to modulate the blood-to-surface interaction, as well as effects generated by the use of cardiotomy suction. Introductory Remarks to Cardiopulmonary Bypass Despite recent trends in cardiac surgery to avoid CPB in attempts to simplify and to reduce complications [12], CPB will play a major role for several cardiac surgical interventions for years to come. Therefore, further refinement and improvement of the extracorporeal technique remains an important field of research. According to the Society of Thoracic Surgeons National Database, 20% or 22.000 low-risk patients develop postoperative complications after cardiac surgery [13]. Multiorgan failure occurs in 11% of cases, which increases the risks of other morbidity and mortality. In our own experience, more than 40% of cardiac surgical patients deviate in some respect from a completely normal postoperative course [14]. Since cardiac surgery is a multidisciplinary intervention, it is difficult to isolate to what extent CPB contributes to the development of organ dysfunction and poor patient outcome. The situation is further
Recommended publications
  • Closed Mitral Commissurotomy—A Cheap, Reproducible and Successful Way to Treat Mitral Stenosis
    149 Editorial Closed mitral commissurotomy—a cheap, reproducible and successful way to treat mitral stenosis Manuel J. Antunes Clinic of Cardiothoracic Surgery, Faculty of Medicine, University of Coimbra, Coimbra, Portugal Correspondence to: Prof. Manuel J. Antunes. Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal. Email: [email protected]. Provenance and Peer Review: This article was commissioned by the Editorial Office, Journal of Thoracic Disease. The article did not undergo external peer review. Comment on: Xu A, Jin J, Li X, et al. Mitral valve restenosis after closed mitral commissurotomy: case discussion. J Thorac Dis 2019;11:3659-71. Submitted Oct 23, 2019. Accepted for publication Nov 29, 2019. doi: 10.21037/jtd.2019.12.118 View this article at: http://dx.doi.org/10.21037/jtd.2019.12.118 In the August issue of the Journal, Xu et al. (1), from Bayley (4,5) and then became widely accepted. Subsequently, China, discuss the case of a patient who had a successful the technique of CMC suffered several modifications, both reoperation for restenosis of the mitral valve performed in the way the mitral valve was accessed and split. Several 30 years after closed mitral commissurotomy (CMC). instruments were created to facilitate the opening of the The specific aspects of this case were most appropriately commissures, culminating with the development of the commented by several experienced surgeons from different Tubbs dilator, which became the standard instrument for parts of the world. I was now invited by the Editor of this the procedure (Figure 1). Journal to write a Comment on this paper and its subject.
    [Show full text]
  • View Pdf Copy of Original Document
    Phenotype definition for the Vanderbilt Genome-Electronic Records project Identifying genetics determinants of normal QRS duration (QRSd) Patient population: • Patients with DNA whose first electrocardiogram (ECG) is designated as “normal” and lacking an exclusion criteria. • For this study, case and control are drawn from the same population and analyzed via continuous trait analysis. The only difference will be the QRSd. Hypothetical timeline for a single patient: Notes: • The study ECG is the first normal ECG. • The “Mildly abnormal” ECG cannot be abnormal by presence of heart disease. It can have abnormal rate, be recorded in the presence of Na-channel blocking meds, etc. For instance, a HR >100 is OK but not a bundle branch block. • Y duration = from first entry in the electronic medical record (EMR) until one month following normal ECG • Z duration = most recent clinic visit or problem list (if present) to one week following the normal ECG. Labs values, though, must be +/- 48h from the ECG time Criteria to be included in the analysis: Criteria Source/Method “Normal” ECG must be: • QRSd between 65-120ms ECG calculations • ECG designed as “NORMAL” ECG classification • Heart Rate between 50-100 ECG calculations • ECG Impression must not contain Natural Language Processing (NLP) on evidence of heart disease concepts (see ECG impression. Will exclude all but list below) negated terms (e.g., exclude those with possible, probable, or asserted bundle branch blocks). Should also exclude normalization negations like “LBBB no longer present.”
    [Show full text]
  • Medicare National Coverage Determinations Manual, Part 1
    Medicare National Coverage Determinations Manual Chapter 1, Part 1 (Sections 10 – 80.12) Coverage Determinations Table of Contents (Rev. 10838, 06-08-21) Transmittals for Chapter 1, Part 1 Foreword - Purpose for National Coverage Determinations (NCD) Manual 10 - Anesthesia and Pain Management 10.1 - Use of Visual Tests Prior to and General Anesthesia During Cataract Surgery 10.2 - Transcutaneous Electrical Nerve Stimulation (TENS) for Acute Post- Operative Pain 10.3 - Inpatient Hospital Pain Rehabilitation Programs 10.4 - Outpatient Hospital Pain Rehabilitation Programs 10.5 - Autogenous Epidural Blood Graft 10.6 - Anesthesia in Cardiac Pacemaker Surgery 20 - Cardiovascular System 20.1 - Vertebral Artery Surgery 20.2 - Extracranial - Intracranial (EC-IC) Arterial Bypass Surgery 20.3 - Thoracic Duct Drainage (TDD) in Renal Transplants 20.4 – Implantable Cardioverter Defibrillators (ICDs) 20.5 - Extracorporeal Immunoadsorption (ECI) Using Protein A Columns 20.6 - Transmyocardial Revascularization (TMR) 20.7 - Percutaneous Transluminal Angioplasty (PTA) (Various Effective Dates Below) 20.8 - Cardiac Pacemakers (Various Effective Dates Below) 20.8.1 - Cardiac Pacemaker Evaluation Services 20.8.1.1 - Transtelephonic Monitoring of Cardiac Pacemakers 20.8.2 - Self-Contained Pacemaker Monitors 20.8.3 – Single Chamber and Dual Chamber Permanent Cardiac Pacemakers 20.8.4 Leadless Pacemakers 20.9 - Artificial Hearts And Related Devices – (Various Effective Dates Below) 20.9.1 - Ventricular Assist Devices (Various Effective Dates Below) 20.10 - Cardiac
    [Show full text]
  • Comparison of Isothermic and Cold Cardioplegia in Cardiac Surgery in Salem District
    Pon. A. Rajarajan. Comparison of isothermic and cold cardioplegia in cardiac surgery in Salem District. IAIM, 2019; 6(3): 266-271. Original Research Article Comparison of isothermic and cold cardioplegia in cardiac surgery in Salem District Pon. A. Rajarajan* Associate Professor. Department of Cardio-Thoracic Surgery, Government Mohan Kumaramangalam Medical College Hospital, Salem, Tamil Nadu, India *Corresponding author email: [email protected] International Archives of Integrated Medicine, Vol. 6, Issue 3, March, 2019. Copy right © 2019, IAIM, All Rights Reserved. Available online at http://iaimjournal.com/ ISSN: 2394-0026 (P) ISSN: 2394-0034 (O) Received on: 03-03-2019 Accepted on: 09-03-2019 Source of support: Nil Conflict of interest: None declared. How to cite this article: Pon. A. Rajarajan. Comparison of isothermic and cold cardioplegia in cardiac surgery in Salem District. IAIM, 2019; 6(3): 266-271. Abstract Background: Perioperative myocardial damage is one of the most common causes of morbidity and mortality after heart surgery. The improvement of the technique of myocardial preservation has contributed greatly to significant advances in cardiac surgery. However, serious questions remain regarding the use of warm versus cold cardioplegia, blood versus crystalloid cardioplegia, antegrade versus retrograde delivery and intermittent versus continuous perfusion. Cardioplegic solution is the means by which the ischemic myocardium is protected from cell death. This is achieved by reducing myocardial metabolism through a reduction in cardiac workload and by the use of hypothermia. Chemically, the high potassium concentration present in most cardioplegic solutions decreases the membrane resting potential of cardiac cells. The normal resting potential of ventricular myocytes is about -90 mV.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • Cardiac Surgery
    Minimally Invasive Port-Access Cardiac Surgery Lawrence M Prescott, phlp OVLRVlEW OF CARDIAC SURGERY tions, pain and suffering, convalescence and cost, while main- Since heart surgery was pioneered in the mid-1950s. remark- taining the high efficacy of conventional open-chest surgery. able advances have occurred in the surgical treatment of car- One of these approaches, percutaneous transluminal coro- diovascular disease. Coronary artery bypass graft (CAW) pro- nary angioplasty (PTCA) or balloon angioplasty was devel- cedures are the most effective treatment for coronary artery oped as an altemative to coronary artery bypass graft (CABG) disease. This treatment utilizes an artery or vein to bypass the surgery. While less invasive than conventional CAW, a narrowing in a coronary artery and restore blood flow down- major drawback of PTCA is the high frequency of restenosis, stream of the narrowing. For valvular heart disease (VHD), which occurs at rates ranging from 25 percent to 50 percent. the treatment involves either repairing the diseased heart Ultimately, the majority of angioplasty patients undergo valve, most commonly with the implantation of a prosthetic another PTCA procedure or CABG surgery. annul~plastyring, or replacing it with a prosthetic mechanical Another less-invasive altemative to cokentional open-chest or tissue valve. CABG surgery was developed by a $mall number of cardiac sur- All the surgical procedures in conventional heart surgery geons. For this procedure, surgeons have been using off-the-shelf require a highly invasive technique, a stemotomy, that tools to perform minimally invasive CABG surgery on the beat- involves opening the patient's chest to gain access to the ing heart.
    [Show full text]
  • Structured Review of Post-Cardiotomy Extracorporeal Membrane Oxygenation
    ACCEPTED MANUSCRIPT Structured review of post-cardiotomy extracorporeal membrane oxygenation: part 2 - Pediatric patients Roberto Lorussoa*, MD, PhD, Giuseppe Maria Raffab*, MD, Mariusz Kowalewskic , MD, Khalid Alenizya, MD, Niels Sluijpersa, MD, Maged Makhoula, MD, Daniel Brodied, MD, Mike McMullane, MD, I-Wen Wangf, MD, Paolo Meanig, MD, Graeme MacLarenh, MD, Heidi Daltoni, MD, Ryan Barbaroj, MD, Xaotong Houk, MD, Nicholas Cavarocchil, MD, Yih-Sharng Chenm, MD, PhD, Ravi Thiagarajann, MD, PhD, Peta Alexandern, MBBS, Bahaaldin Alsoufio, MD, PhD, Christian A. Bermudezp, MD, Ashish S. Shahq, MD, Jonathan Haftr, MD, Lilia Oretos, MD, David A. D’Alessandrot, MD, Udo Boekenu, MD, PhD, and Glenn Whitmanv, MD From the aCardio-Thoracic Surgery Dept., Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands; bDepartment for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS—ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad alta specializzazione), Palermo, Italy; cDepartment of Cardiac Surgery, Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland; dDivision of Pulmonary & Critical Care Medicine, Columbia University, New York, NY; eCardiac Surgery Unit, Seattle Children Hospital, Seattle, Washington; fCardiac Transplantation and Mechanical Circulatory Support Unit, Indiana University School of Medicine, Health Methodist Hospital, Indianapolis, Indiana; gCardiology Dept., Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands;
    [Show full text]
  • Design and Development of a Combined Cardiovascular Assist System for Support in Severe Ventricular Failure
    RICE UNIVERSITY DESIGN AND DEVELOPMENT OF A COMBINED CARDIOVASCULAR ASSIST SYSTEM FOR SUPPORT IN SEVERE VENTRICULAR FAILURE by Robert L. Peterson A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE THESIS DIRECTOR'S SIGNATURE: (MAY 1979) ABSTRACT Title: Design and Development of a Combined Cardiovascular Assist System for Support in Severe Ventricular Failure Author: Robert L. Peterson This thesis work documents the design and testing of a ventricular assist system combining intra-aortic balloon pumping (IABP) with partial veno-arterial bypass (VABP), both pulsatile and nonpulsatile. A series of animal experiments was carried out after verification of the concept on a mock circulation. Although statistical significance was not obtained, the results were encouraging. This system combines the beneficial features of the two devices in a synergistic manner to obtain a system capable of total body support while at the same time improving the viability of the damaged myocardium. IABP, itself incapable of supporting the circulation in severe heart failure, is used to reduce the afterload caused by VABP, which can provide more profound circulatory assistance. Diastolic augmentation by pulsatile VABP enhances that due to IABP, and there is further enhancement of IABP function due to increased mean arterial pressure. A decrease in heart preload pressure was seen which reflected the decreased venous return brought about by bypass. Thus, in spite of increased total body perfusion, cardiac output was diminished. The decrease in cardiac output was sufficient to reduce heart flow work even though there was an increase in afterload pressure. Finally, the state of the animal seemed to be improved by the assist system in that arrhythmia and mortality were decreased during combined assistance.
    [Show full text]
  • Postoperative Care of the Open-Cardiotomy Patient
    POSTOPERATIVE CARE OF THE OPEN-CARDIOTOMY PATIENT HAROLD F. KNIGHT, JR., M.D.,* and DONALD B. EFFLER, M.D. Department of Thoracic Surgery PEN-CARDIOTOMY patients require a postoperative program that is O individualized and meticulously supervised. There are no rules that can serve as a fixed guide for proper care. Experience in 103 operations, in 86 of which we performed elective cardiac arrest with potassium citrate,1-2 has established for us a set of procedures useful in the postoperative care. It is the intent of this paper to elaborate upon these basic observations. It is not necessary to review the general care of patients recovering from thoracic surgical pro- cedures; our interest is confined at present to patients who have undergone open cardiotomy. The details of this postoperative program are of particular import in the care of children; adults do not require such precise attention, as their larger body mass makes small variations relatively less important. Immediately Postoperative Care The changes in patients during the hours immediately after open cardiotomy are sufficiently rapid and severe that it is mandatory to have a qualified team in constant attendance. This is best accomplished with a special-care unit designed and equipped exclusively for these patients. The basic team should include a resident physician well trained in thoracic surgery, and experienced nurses who are particularly interested in the field of cardiac surgery. A fortunate selection of capable personnel may be rewarded by a self-perpetuating system as the service demands grow. A detailed description of the equipment will not be given here; suffice it to say that the usual implements of the recovery room are basic and must be augmented by such specialized equipment as Croupettes, inter- mittent positive-pressure-demand valves (such as the Bennett device), a large- screen monitor for the electrocardiogram, and specialized emergency pharma- ceuticals.
    [Show full text]
  • Instructions and Data Element Definitions Form DOH-2254A
    NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF QUALITY AND PATIENT SAFETY CARDIAC SERVICES PROGRAM 2014 Discharges Cardiac Surgery Report, Adult (Age 18 and Over) Instructions and Data Element Definitions Form DOH-2254a CARDIAC SERVICES PROGRAM CONTACTS: One University Place, Suite 218 Rensselaer, NY 12144-3455 Phone: (518) 402-1016 Fax: (518) 402-6992 Kimberly S. Cozzens, MA, Cardiac Initiatives Research Manager, [email protected] Rosemary Lombardo, MS, CSRS Coordinator, [email protected] Table of Contents Topic Page Revision Highlights and Coding Clarifications…………………..…………… 6 When to Complete an Adult CSRS Form ……………………………………. 6 Guidance on Selecting Appropriate Procedure Codes ………………….... 8 CSRS Data Reporting Policies ……………………………………….………. 10 ITEM-BY-ITEM INSTRUCTIONS PFI Number ………………………………………………………………... 12 Sequence Number ………………………………………………………... 12 I. Patient Information Patient Name ……………………………………………………………… 12 Medical Record Number …………………………………………………. 12 Social Security Number ………………………………………………….. 12 Date of Birth ………………………….………………………….………… 12 Sex ………………………….………………………….…………………… 13 Ethnicity ………………………….………………………….……………... 13 Race ………………………….…………………………………………….. 13 Residence Code ………………………….……………………………….. 14 Hospital Admission Date ………………………….……………………… 14 Primary Payer ………………………….………………………………….. 14 Medicaid ………………………….………………………….…………….. 15 PFI of Transferring Hospital ………………………….………………….. 15 II. Procedural Information Hospital That Performed Diagnostic Cath ………………………….…… 16 Date of Surgery ………………………….…………………………………
    [Show full text]
  • The 2012 Coding Manual Collection
    The 2012 Coding Manual Collection SaMple pageS ICD-9-CM Manual, Volumes 1, 2 & 3 (Hospital Edition) ICD-9-CM Manual, Volume 1 & 2 (Professional Edition) HCPCS Level II Manual The following 10 sample pages are from HCpro’s 2011 ICD-9-CM Coding Manual, Volumes 1, 2 & 3 SaMple pageS ICD-9-CM Manual, Volumes 1, 2 & 3 (Hospital Edition) 2011 ICD-9-CM Conventions HCPro’s ICD-9-CM manuals include all the symbols and conventions Please note: Certain categories of codes only consider a particular set of found in the government’s official version (see Preface and ICD-9-CM fifth digits to be a CC condition. Official Guidelines for Coding and Reporting). In addition, HCPro’s ICD- • For example: 9-CM manuals include the following icons and color-coded conventions: Category 403.9x. CC 1 ✓4 TH Fourth digit required. In order to accurately assign a diagnosis This means that ICD-9 code 403.90 is not considered a CC condition, but from this category, it requires the assignment of a fourth digit. 403.91 is designated as a CC condition. • For example: Category 465.x requires a fourth digit of a 0, 8, or 9 to be assigned an accurate code. MCC Major Complication and Comorbidity. This diagnosis is considered a major complication and/comorbidity. Assignment of these ✓5 TH Fifth digit required. In order to accurately assign a diagnosis from diagnoses as an additional code may impact DRG assignment. this category, it requires the assignment of a fifth digit. • For example: 585.6 (End stage renal disease) is • For example: Category 642.0x requires a fifth digit of a 0, 1, 2, 3, or designated as an MCC.
    [Show full text]
  • Management of Disrupted Sternotomy
    Thorax: first published as 10.1136/thx.36.9.676 on 1 September 1981. Downloaded from Thorax 1981 ;36:676-678 Management of disrupted sternotomy AC ROY, JRH PENHALL, EWJ CAMERON From the Department of Cardiothoracic Surgery, The Royal Infirmary, Edinburgh ABSTRACT Seventeen out of 929 consecutive patients (1-8 %) who underwent open-heart surgery during the last three years developed dehiscence of the sternotomy. Infection was the most common cause of dehiscence and occurred more often after reopening of the incision to control bleeding or relieve tamponade. We describe a one stage closure which was used in all 17 cases. A successful result was obtained in 16 cases, discharge from hospital occurring between 21 and 51 days after closure. Whethercausedbywound infection or, lesscommonly, by primary non-union of the sternum, disruption of the wound leads to dehiscence of the skin and soft tissue layers anterior to the sternum, separation of the now mobile halves of the divided sternum and exposure of the mediastinum. Reclosure of the wound is mandatory. In this report a method of closure is described and the results obtained with this copyright. technique in a series of 17 patients are described. Surgical technique The skin and presternal fascial layers, if not already completely dehiscent, are separated throughout the http://thorax.bmj.com/ length of the wound (fig 1). Often the closure of the linea alba is intact in which case the fascial layers in the epigastrium are left undisturbed. The material used (usually wire) to approximate the sternal fragments at primary closure is removed. If the subjacent pericardial cavity is sealed off from the general wound, the sealing layer is not dis- turbed.
    [Show full text]