Published Version: Martinho N., Silva L

Total Page:16

File Type:pdf, Size:1020Kb

Published Version: Martinho N., Silva L Research Archive Citation for published version: Martinho N., Silva L. C., Florindo H. F., Brocchini S., Zloh M., and Barata T. S., ‘Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties’, International Journal of Nanomedicine, Vol. 12: 7053-7073, September 2017. DOI: https://doi.org/10.2147/IJN.S135475 Document Version: This is the Published version. Copyright and Reuse: This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Enquiries If you believe this document infringes copyright, please contact the Research & Scholarly Communications Team at [email protected] Journal name: International Journal of Nanomedicine Article Designation: Original Research Year: 2017 Volume: 12 International Journal of Nanomedicine Dovepress Running head verso: Martinho et al Running head recto: Design of glutamic acid dendrimers with different terminal groups open access to scientific and medical research DOI: http://dx.doi.org/10.2147/IJN.S135475 Open Access Full Text Article ORIGINAL RESEARCH Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties Nuno Martinho1–3 Abstract: Dendrimers are hyperbranched polymers with a multifunctional architecture that can Liana C Silva1,4 be tailored for the use in various biomedical applications. Peptide dendrimers are particularly Helena F Florindo1 relevant for drug delivery applications due to their versatility and safety profile. The overall lack Steve Brocchini2 of knowledge of their three-dimensional structure, conformational behavior and structure–activity Mire Zloh3 relationship has slowed down their development. Fluorophores are often conjugated to dendrimers Teresa S Barata2 to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and 1 Research Institute for Medicines have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, we have used computer-aided molecular design and molecular dynamics simulations to identify 2 For personal use only. Lisbon, Portugal; Department of optimal topology of a poly(L-glutamic acid) (PG) backbone dendrimer that allows incorporation Pharmaceutics, UCL School of of fluorophores in the core with minimal availability for undesired interactions. Extensive all- Pharmacy, London, 3School of Life and Medical Sciences, University of atom molecular dynamic simulations with the CHARMM force field were carried out for different Hertfordshire, Hatfield, UK; 4Centro generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and de Química-Física Molecular and IN – Institute of Nanoscience and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis Nanotechnology, Instituto Superior of structural and topological features of all designed dendrimers provided information about their Técnico, Universidade de Lisboa, size, shape, internal distribution and dynamic behavior. We have found that four generations of a Lisboa, Portugal PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to exter- nal environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system. Keywords: dendrimers, peptide dendrimers, molecular dynamics, fluorescence, CHARMM, International Journal of Nanomedicine downloaded from https://www.dovepress.com/ by 147.197.30.88 on 02-Feb-2018 structure-activity, surface properties Introduction Dendrimers belong to a class of hyperbranched polymers with well-defined radial architecture that has been extensively studied for biomedical applications.1 The topology Correspondence: Mire Zloh of dendrimers can be described by their core, internal branches (or spacers) and terminal School of Life and Medical Sciences, groups. By using various monomers to build different topological architectures, it is University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK possible to design their size, their shape, the surface groups available for interaction Email [email protected] and overall physicochemical properties.2–4 Similar to other drug delivery systems, one of the key requirements is to have an adequate safety profile.5 In this regard, Teresa S Barata Department of Pharmaceutics, UCL peptide dendrimers consisting of natural amino acids are attractive candidates for use School of Pharmacy, 29/39 Brunswick in biological systems due to their potential biodegradability and biocompatibility.6 Square, London WC1N 1AX, UK Email [email protected] Peptide dendrimers can be synthesized either by linear combinations of amino acids submit your manuscript | www.dovepress.com International Journal of Nanomedicine 2017:12 7053–7073 7053 Dovepress © 2017 Martinho et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you http://dx.doi.org/10.2147/IJN.S135475 hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Powered by TCPDF (www.tcpdf.org) 1 / 1 Martinho et al Dovepress assembled at a branching point7,8 or by using amino acids as to incorporate a fluorophore (of different size) into its core. focal branching points themselves (eg, glutamic acid [GLU],9 The goal of this approach was to determine the generation lysine [LYS]10,11 and aspartic acid12). Owing to side chain size at which the fluorophore can be protected from the external and the combination of amino acids, these peptide dendrimers environment, thus ensuring that the probe does not interfere might have an asymmetric arrangement that will create dif- with the interaction of PG dendrimers with other biomol- ferent local microenvironments within the dendrimer and be ecules. Furthermore, different surface modifications were suitable to different surface modifications.13–15 studied to determine their overall effect on the structural Although extensively studied, the mechanism of properties of the modified core dendrimers. We have used action of bioactive dendrimers is still difficult to probe all-atom MD simulations using the CHARMM FF as an experimentally.16 One way to track dendrimers during their FF suitable to study structural properties of dendrimers.23 interaction with biomolecules and cells is to conjugate a fluo- These simulations were used to describe the structure and rescent probe at the surface of these carriers. However, there conformational behavior of PG dendrimers, as well as the are two main drawbacks of using this approach. First, fluores- effects of modifying the dendrimer core by attaching different cent probes may randomly be distributed at the surface. This size fluorophores, namely, nitrobenzoxadiazole (NBD) would result in a heterogeneous population of dendrimers, or Oregon Green 488 (ORG). NBD was chosen due to its ranging from non-labelled dendrimers to dendrimers with small size and optical properties that are suitable to monitor multiple fluorophores, where the proximity between the polarity changes in the surrounding environment, whereas probes might lead to possible quenching effects.17 Second, the ORG was selected due to its bigger size and suitable the fluorophore probes can themselves interact with cells spectroscopic properties to be used in monitoring cell events. and interfere or mask the real interaction of dendrimers with We further evaluated the effects of diverse terminal groups these biological systems.18,19 Furthermore, the targeted drug with different charges on the structure of the dendrimers by delivery achieved by conjugation of different monomers to using GLU, LYS or tryptophan (TRP; Figure 1). This study surface groups13,14 may be affected by the introduction of a demonstrates the use of MD simulation to provide an insight For personal use only. fluorophore on the surface. into the versatility of the PG dendrimers that can be further In order to avoid this kind of interferences, phosphorus explored for different biomedical applications. dendriplexes with a fluorophore attached to the core have been synthesized to study their interaction with cells.20 Methods Thus, designing dendrimers that have a defined number of Monomer parameterization probes that are hindered from the external environment
Recommended publications
  • Gyrotropy and Anisotropy of Rocks: Similarities and Differences
    GYROTROPY AND ANISOTROPY OF ROCKS: SIMILARITIES AND DIFFERENCES T. I. CHICHININA and I. R. OBOLENTSEVA GYROTROPIE ET ANISOTROPIE DES ROCHES : SIMILITUDES ET DIFFƒRENCES Institute of Geophysics of Russian Academy of Sciences Les principales caractŽristiques de la propagation des ondes dans (Siberian Branch)1 les milieux gyrotropes sont comparŽes avec la propagation des ondes dans les milieux azimutalement anisotropes. Les rŽsultats dÕune modŽlisation numŽrique sont prŽsentŽs pour trois mod•les caractŽristiques dÕexploration sismique. Les deux premiers mod•les sont des milieux anisotropes (de symŽtrie orthorhombique, groupe 2m) avec et sans gyrotropie. Le troisi•me mod•le est un milieu gyrotrope transverse isotrope avec un axe de symŽtrie vertical. Ces calculs ont ŽtŽ rŽalisŽs pour la propagation des ondes transversales le long de lÕaxe de symŽtrie vertical. Pour des trajets sismiques suffisamment courts (pour nos mod•les, moins de 400 m), les sismogrammes ˆ deux composantes (x, y) sont similaires pour les trois mod•les. Pour des trajets plus longs, la forme et la durŽe du signal diff•rent sensiblement pour les mod•les 1 et 3. Ceci a pour but de montrer (ˆ lÕaide des donnŽes expŽrimentales et dÕun micromod•le) que la gyrotropie dans les roches existe, ou, tout au moins, peut exister. GYROTROPY AND ANISOTROPY OF ROCKS: SIMILARITIES AND DIFFERENCES The main features of wave propagation in gyrotropic media are compared with wave propagation in anisotropic media. The results of numerical modelling are presented for three typical seismic exploration models. The first two models are azimuthally anisotropic media (of orthorombic symmetry system, group 2m) without and with gyration. The third model is a gyrotropic transversely isotropic medium with a vertical symmetry axis.
    [Show full text]
  • A Axial Vector, Crystallographic Point Groups, 61–62 B Basis Functions, 31 Birefringence, 114–118 Bloch Wave Function, 216 B
    Index A crystallographic point groups, Kerr Axial vector, crystallographic point groups, tensor, 130–131 61–62 crystals electrooptic coefficients, 127 C3v symmetry crystal electric field, 129 B D2d symmetry electrooptic tensor, 128 Basis functions, 31 first-order electrooptic effect/Pockels Birefringence, 114–118 effect, 123–124 Bloch wave function, 216–218 Kerr coefficients, 129 Bravais lattices, 6 Kerr effect, 124–125 Brillouin zones, 21–23 optical activity definition, 118 C gyration tensor, 120 Cartesian coordinates transformation, 28–29 gyration tensor crystallographic point Character table groups, 122–123 32 crystallographic point groups, 32–38 Neumann’s principle, 122 Pauli spin operators, 39–40 rotatory dispersion effect, 121 Coordinates transformation matrix, 29 rotatory power, 119 Crystal field symmetry spatial dispersion, 119 medium crystal field case, 86 symmetry properties, gyration tensor octahedral coordination, ligands, 86–87 components, 122 perturbation theory, 86 photoelastic effect Stark splitting, 85 elastooptical coefficients, 134 strong crystal field case, 86 photoelastic tensor-tensor form weak crystal field case, 85 difference, 133 Crystals optical properties and symmetry piezooptical coefficients, 131 birefringence refractive index coefficients, 132 crystal dielectric property, 114–115 polarization, tensor treatment double refraction, 115 electromagnetic light wave, electric indicatrix, 116–117 field, 106 linear optics fundamental equation, Jones matrices, 112 115–116 Jones vector, 110–111 optically anisotropic material left-circularly
    [Show full text]
  • On the Sonographic Power Postulate and Its Role in Interpreting the 1905 and 1915 Relativity Theories
    On the bondgraphic power postulate and its role in interpreting the 1905 and 1915 relativity theories Item Type text; Thesis-Reproduction (electronic) Authors Gussn, Nasser, M. N., 1968- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 22:51:28 Link to Item http://hdl.handle.net/10150/558235 ON THE SONOGRAPHIC POWER POSTULATE AND ITS ROLE IN INTERPRETING THE 1905 AND 1915 RELATIVITY THEORIES by Kasser Gmssa copyright © Nasser M. N. Gussn 1994 A Thesis Submitted to the Faculty of the DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN ELECTRICAL ENGINEERING In the Graduate College THE UNIVERSITY OF ARIZONA 1994 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: Associate Professor of Electrical and Computer Engineering 3 ACKNOWLEDGMENTS I have no doubt in my mind that this work would have not been able to stand as a reality, had it not been for the will of God, who bestowed on me of his uncountabley infinite blessings what I cannot count.
    [Show full text]
  • Polypropylene Doros N
    1206 Macromolecules 1985, 18, 1206-1214 and n = 1, K = 106.6(in 0.01 M NaAc), respectively. Be- Acknowledgment. We are grateful to Mrs. A. R. So- cause the range for the extent of binding r is limited (0.7 chor for technical assistance, Dr. I. S. Ponticello and Mr. < r < 1.0) for this strong binding polymer, the agreement K. R. Hollister for the preparation of some of the polymers between the calculated curves and the data points in these used in this study, and Dr. H. Yu and Dr. J. L. Lippert plots does not support the validity of the independent-site for discussions during this study. model, however. One way to circumvent this difficulty was to increase References and Notes the ionic strength of the medium to 0.05 M NaCl and (1) Frank, H. S.; Evans, M. W. J. Chem. Phys. 1945, 13, 507. hence to weaken the binding so that the data points can (2) Kauzmann, W. Adu. Protein Chem. 1959, 14, 1. (3) Franks, F. “Water, A Comprehensive Treatise”; Franks, F., cover the whole range of r. These data were indeed ob- Ed.; Plenum Press: New York, 1975;Vol. 4, p 1. tained and analyzed in the same manner as those above (4) Klotz, I. M.; Royer, G. P.; Sloniewsky, A. R. Biochemistry for MPVI + MO and are summarized in Table IV. Direct 1969, 8, 4752. comparison of the parameters and w for the two poly- (5) Quadrifoglio, F.; Crescenzi, V. J. Colloid Interface Sci. 1971, KO 35, 447. mer listed in this table is not appropriate because the two (6) Reeves, R.
    [Show full text]
  • Rotational Particle Separation in Solutions: Micropolar Fluid Theory Approach
    polymers Article Rotational Particle Separation in Solutions: Micropolar Fluid Theory Approach Vladimir Shelukhin 1,2 1 Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia; [email protected] 2 Novosibirsk State University, 630090 Novosibirsk, Russia Abstract: We develop a new mathematical model for rotational sedimentation of particles for steady flows of a viscoplastic granular fluid in a concentric-cylinder Couette geometry when rotation of the Couette cell inner cylinder is prescribed. We treat the suspension as a micro-polar fluid. The model is validated by comparison with known data of measurement. Within the proposed theory, we prove that sedimentation occurs due to particles’ rotation and rotational diffusion. Keywords: suspensions; micro-polar fluids; yield stress 1. Introduction The classical water-based drilling muds contain only water and clay and their perfor- mances are generally poor. Polymers used in drilling fluids improve stability and cutting removal. Currently, the polymer-based drilling fluids represent 15 to 18% of the total cost (about 1 million) of petroleum well drilling [1]. The reason is that such fluids appear to have load carrying capabilities, or, in other words, a yield stress, associated with the solid-like Citation: Shelukhin, V. Rotational state and which primarily arises from the colloidal forces between the smallest suspended Particle Separation in Solutions: particles. Furthermore, in such systems, when the agitation is increased, a fluid-like state is Micropolar Fluid Theory Approach. recovered. Even in the fluid state, these materials usually show highly nonlinear behavior. Polymers 2021, 13, 1072. https:// The complex rheology related to the change of the internal state in the suspensions is still doi.org/10.3390/polym13071072 rather poorly understood.
    [Show full text]
  • Exercises: Answers and Solutions
    Appendix Exercises: Answers and Solutions Exercise Chapter 1 1.1 Complex Numbers as 2D Vectors (p. 6) Convince yourself that the complex numbers z = x + iy are elements of a vector space, i.e. that they obey the rules (1.1)–(1.6). Make a sketch to demonstrate that z1 + z2 = z2 + z1, with z1 = 3 + 4i and z2 = 4 + 3i, in accord with the vector addition in 2D. Exercise Chapter 2 2.1 Exercise: Compute Scalar Product for given Vectors (p. 14) Compute the length, the scalar products and the angles betwen the three vectors a, b, c which have the components {1, 0, 0}, {1, 1, 0}, and {1, 1, 1}. Hint: to visualize the directions of the vectors, make a sketch of a cube and draw them there! The scalar products of the vectors with themselves are: a · a = 1, b · b = 2, c · c = 3, and consequently √ √ a =|a|=1, b =|b|= 2, c =|c|= 3. The mutual scalar products are a · b = 1, a · c = 1, b · c = 2. The cosine of the angle ϕ between these vectors are √1 , √1 , √2 , 2 3 6 © Springer International Publishing Switzerland 2015 389 S. Hess, Tensors for Physics, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-12787-3 390 Appendix: Exercises… respectively. The corresponding angles are exactly 45◦ for the angle between a and b, and ≈70.5◦ and ≈35.3◦, for the other two angles. Exercises Chapter 3 3.1 Symmetric and Antisymmetric Parts of a Dyadic in Matrix Notation (p. 38) Write the symmetric traceless and the antisymmetric parts of the dyadic tensor Aμν = aμbν in matrix form for the vectors a :{1, 0, 0} and b :{0, 1, 0}.
    [Show full text]
  • Improved Measures for the Shape of a Disordered Polymer to Test a Mean-Field Theory of Collapse Shirin Hadizadeh,† Apichart Linhananta,‡ and Steven S
    ARTICLE pubs.acs.org/Macromolecules Improved Measures for the Shape of a Disordered Polymer To Test a Mean-Field Theory of Collapse Shirin Hadizadeh,† Apichart Linhananta,‡ and Steven S. Plotkin*,† †Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada ‡Physics Department, Lakehead University, Thunder Bay, Ontario, Canada bS Supporting Information ABSTRACT: We have generated off-lattice self-avoiding ran- dom walks (SAWs) by both Lal’s pivot algorithm and by discontinuous molecular dynamics (DMD) simulations. We chose several volume measures to analyze and compare the shapes characterizing ensembles of SAWs. These included the Flory volume defined through the end-to-end distance, the volume corresponding to the radius of gyration of the polymer, the volume of a sphere drawn from the center of polymer mass that encloses or embeds all the monomers in the polymer, the corresponding ellipsoid describing the radius of gyration tensor, the volume of the smallest Cartesian box oriented in a fixed “lab” frame which encloses all polymer monomers, and the volume of the smallest box oriented along the principal axes of the radius of gyration tensor that encloses all polymer monomers. The tensor ellipsoid and principal box correlate well with each other but not with the other measures. There is a substantial amount of polymer that is excluded from the radius of gyration sphere or ellipsoid (approximately 42% and 44% respectively on average), which casts doubt on the utility of these measures in quantitatively characterizing the volume spanned by a polymer configuration. The principal box volume led to the most well-defined length distribution for the SAW in terms of the ratio of standard deviation to the mean, while the end-to-end distribution was the most broadly distributed.
    [Show full text]
  • Indicative Surfaces for Crystal Optical Effects
    Indicative Surfaces for Crystal Optical Effects R.Vlokh, O.Mys and O.Vlokh Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine, E-mail: [email protected] Received: 09.11.2005 Abstract: This paper has mainly a pedagogical meaning. Our aim is to demonstrate a correct general approach for constructing indicative surfaces of higher-rank tensors. We reconstruct the surfaces of piezo- optic tensor for β-BaB2O4 and LiNbO3 crystals, which have been incorrectly presented in our recent papers. Keywords: indicative surface, piezooptic tensor PACS: 78.20.-e, 78.20.Hp Introduction Many works have been devoted to analysis of anisotropy of piezooptic (PO) effect in crystals on the basis of construction of so-called indicative surfaces (see [1-5] and our previous studies [6,7]). Unfortunately, the indicative surfaces in those studies have been constructed, using the inconsistent formula πααααπ′ = ijkl im jn kp lt mnpt , (1) π ′ where ijkl means the PO tensor written in the current (or ‘new’) Cartesian coordinate π system, mnpt the PO tensor written in the ‘old’ Cartesian coordinate system and αααα im,,, jn kp lt the matrix components of directional cosines between the ‘old’ and ‘new’ systems. It is necessary to note that Eq. (1) is often used for rewriting tensors in different Cartesian systems or, in some special cases, for constructing the so-called representation surfaces (see, e.g., [8]), though not the indicative ones. In this paper, we present the relation for the indicative surfaces of higher-order crystal optical effects, specifically for the PO one, and reconstruct in this way the surfaces presented in our previous works.
    [Show full text]
  • Molecular Cooperativity and Compatibility Via Full Atomistic Simulation
    MOLECULAR COOPERATIVITY AND COMPATIBILITY VIA FULL ATOMISTIC SIMULATION A Dissertation Presented By Kenny Kwan Yang to The Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Civil Engineering Northeastern University Boston, Massachusetts May 2015 Molecular Cooperativity/Compatibility K. Kwan, 2015 ii ABSTRACT Civil engineering has customarily focused on problems from a large scale perspective, encompassing structures such as bridges, dams and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility – e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems.
    [Show full text]