Stochastic Modelling, Bayesian Inference, and New in Vivo Measurements Elucidate the Debated Mtdna Bottleneck Mechanism
Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism Iain G. Johnston1, Joerg P. Burgstaller2,3, Vitezslav Havlicek4, Thomas Kolbe5,6, Thomas R¨ulicke7, Gottfried Brem2,3, Jo Poulton8, Nick S. Jones1 1 Department of Mathematics, Imperial College London, UK 2 Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, 3430 Tulln, Austria 3 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinrplatz 1, 1210 Vienna, Austria 4 Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria 5 Biomodels Austria, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria 6 IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln, Austria 7 Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterin¨arplatz1, 1210 Vienna, Austria 8 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, UK Abstract Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian com- putation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model.
[Show full text]