Turbocharging and Supercharging Supercharger Potential
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Executive Order D-425-50 Toyota Racing Development
State of California AIR RESOURCES BOARD EXECUTIVE ORDER D—425—50 Relating to Exemptions Under Section 27156 of the California Vehicle Code Toyota Racing Development TRD Supercharger System Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G—14—012; IT IS ORDERED AND RESOLVED: That the installation of the TRD Supercharger System, manufactured and marketed by Toyota Racing Development, 19001 South Western Avenue, Torrance, California, has been found not to reduce the effectiveness of the applicable vehicle pollution control systems and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for the following Toyota truck applications: Part No. Model Year Engine Disp. Model PTR29—34070 2007 to 2013 5.7L (3UR—FE) Tundra PTR29—00140 2014 to 2015 5.7L (3UR—FE) Tundra PTR29—34070 2008 to 2013 5.7L (3UR—FE) Sequoia PTR29—00140 2014 to 2015 5.7L (3UR—FE) Sequoia PTR29—60140 2008 to 2015 5.7L (3UR—FE) Land Cruiser/LX570 PTR29—35090 2005 to 2015 4.0L (1GR—FE) Tacoma PTR29—35090 2007 to 2009 4.0L (1GR—FE) FJ Cruiser PTR29—35090 2003 to 2009 4.0L (1GR—FE) 4—Runner PTR29—00130 2010 to 2014 4.0L (1GR—FE) FJ Cruiser PTR29—00130 2010 to 2015 4.0L (1GR—FE) 4—Runner The 5.7L Supercharger System includes a Magnuson supercharger (rated at a maximum boost of 8.5 psi.) with a 2.45 inch diameter supercharger pulley and the stock crankshaft pulley, high flow injectors to replace the stock injectors, a new ECU calibration, intercooler, intake manifold, an air bypass valve, and a new replacement fuel pump which is located in the fuel tank. -
A Review of Energy Storage Technologies' Application
sustainability Review A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration Henok Ayele Behabtu 1,2,* , Maarten Messagie 1, Thierry Coosemans 1, Maitane Berecibar 1, Kinde Anlay Fante 2 , Abraham Alem Kebede 1,2 and Joeri Van Mierlo 1 1 Mobility, Logistics, and Automotive Technology Research Centre, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] (M.M.); [email protected] (T.C.); [email protected] (M.B.); [email protected] (A.A.K.); [email protected] (J.V.M.) 2 Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; [email protected] * Correspondence: [email protected]; Tel.: +32-485659951 or +251-926434658 Received: 12 November 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Renewable energy sources (RESs) such as wind and solar are frequently hit by fluctuations due to, for example, insufficient wind or sunshine. Energy storage technologies (ESTs) mitigate the problem by storing excess energy generated and then making it accessible on demand. While there are various EST studies, the literature remains isolated and dated. The comparison of the characteristics of ESTs and their potential applications is also short. This paper fills this gap. Using selected criteria, it identifies key ESTs and provides an updated review of the literature on ESTs and their application potential to the renewable energy sector. The critical review shows a high potential application for Li-ion batteries and most fit to mitigate the fluctuation of RESs in utility grid integration sector. -
MGA Supercharger System Installation Instructions for 1955 to 1962 MGA
MGA Supercharger System Installation Instructions For 1955 to 1962 MGA PART # 150-040 440 Rutherford St. P.O. Box 847 Goleta, CA 93117 1-800-667-7872 • FAX 805-692-2525 • www.mossmotors.com Please read and understand these valve between the barbed fitting and the instructions completely before you brake booster (closer to the booster) with begin the installation. the check valve arrow pointing toward the supercharger manifold. A few notes before you begin: Hose clamps: Re-use hose clamps, or Engine condition - Your car should have purchase new ones where necessary. Use a fresh tune up, including new spark plug new hose clamps on all fuel connections. wires, points, and a new distributor cap and rotor. Spark plugs are included in the If you have installed vacuum boosted supercharger system. brakes - you MUST install a check valve (Moss Part # 150-071) in the vacuum How superchargers work — line. This will prevent pressurized air from Superchargers compress the air/fuel mix- reaching the brake booster system and ture, filling cylinders with a greater charge damaging it. To install, remove the larger than when normally aspirated. Normally of the 3 plugs in the back of the super- aspirated engines produce vacuum, read charger manifold and install a barbed in inches of mercury, superchargers and fitting using teflon tape on the threads. turbochargers produce boost, read in posi- Using 3/8 in vacuum line, install the check tive pounds per square inch. 150-040 -1- Revised 1/11 Installation Instructions Boost capacity is determined by supercharger rod, jet, and slide have been altered to run prop- RPM which is, of course, affected by pulley size erly and safely on a wide range of supercharged, (the smaller the supercharger pulley, the faster unmodified engines. -
Forced Induction Basics, Supercharging & Turbocharging; Engine Professional
EP Q2-12 10-27_Layout 1 4/19/12 11:45 AM Page 10 Forced Induction Basics BY MIKE MAVRIGIAN PHOTOS BY MIKE MAVRIGIAN UNLESS OTHERWISE NOTED Supercharging and turbocharging tidbits While this article may be a bit simplistic SUPERCHARGER BASICS for those familiar with forced induction, Superchargers (blowers) are offered in hopefully the information will be helpful three types, including the Roots type, to those who are not as experienced with centrifugal and the screw type. The Roots this approach. type is the least complex, functioning as an air pump. Instead of compressing air A naturally-aspirated engine uses inside the unit, pressurization takes place available (ambient) air to enter the in the manifold and combustion engine, mix with fuel and ignite in the chambers (referred to as external air combustion chamber. A forced induction compression). Centrifugal and screw type system (supercharger or turbocharger) superchargers compress air inside the does just what the term implies…it forces additional air into the combustion supercharger (internal compression), chamber. When mixed with the pushing the compressed air into the appropriate ratio of fuel, you create intake and combustion areas. A higher cylinder pressure, referred to as centrifugal unit mechanically functions boost, which makes more power. While much the same as a turbocharger, with an we certainly don’t have the room here to internal impeller. Instead of being driven delve into great detail, we’ll try to offer a by exhaust gas (as with a turbo), a few informational tidbits that will centrifugal supercharger impeller is hopefully help you to better understand driven mechanically by a drive belt. -
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
applied sciences Article An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles Arthur Kerviel 1,2, Apostolos Pesyridis 1,* , Ahmed Mohammed 1 and David Chalet 2 1 Department of Mechanical and Aerospace Engineering, Brunel University, London UB8 3PH, UK; [email protected] (A.K.); [email protected] (A.M.) 2 Ecole Centrale de Nantes, LHEEA Lab. (ECN/CNRS), 44321 Nantes, France; [email protected] * Correspondence: [email protected]; Tel.: +44-189-526-7901 Received: 17 October 2018; Accepted: 19 November 2018; Published: 3 December 2018 Abstract: Mass-produced, off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines, since the requirements are different. These include a high pressure ratio, a low mass flow rate, a high efficiency requirement, and a compact size. From the established fuel cell types, the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC), operating at around 80 ◦C. In this case, an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits, a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. -
High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal. -
Ces-Collins-Pp-Ev-Conundrum
Gabriel Collins, J.D. Baker Botts Fellow for Energy & Environmental Regulatory Affairs Baker Institute for Public Policy, Rice University EVs = Power-to-WeigHt Ratio of an Aircraft, Onboard Fuel of a Subcompact Car • Electric veHicles’ instant torque and higH horsepower make the higher-end editions true performance monsters. Their power-to-weigHt ratios are often on par witH turboprop aircraft and many helicopters. • The fly in the ointment comes from the fact that batteries remain heavy and relative to hydrocarbons and simply cannot store energy nearly as efficiently per unit of mass. • The power-to-weigHt/onboard energy density relationsHip of the Rivian R1T electric truck and A-29 Big, long-range Super Tucano attack aircraft is sucH that platforms “Rivianizing” the Tucano would mean making its onboard jet fuel stores retain their current energy Super Tucano (17) and Rivian R1T (14) content, but weigH more per liter than lead metal. Needless to say, the plane’s fligHt endurance and carrying capacity would fall dramatically. • This estimate assumes the A-29’s PT-6 turboprop has a thermal efficiency of about 35%--less than half the R1T’s likely capacity to convert fuel into actual propulsive energy. Please cite as: Gabriel Collins, “The EV Conundrum: High Power Density and Low Energy Density,” Baker Institute ResearcH Source: Beechcraft, Car & Driver, EIA, EV Database, GE, Global Security, Man, Nikola, Peterbuilt, Rivian, SNC, Trucks.com, USAF, US Navy Presentation, 8 January 2020, Houston, TX Gabriel Collins, J.D. Baker Botts Fellow for Energy & Environmental Regulatory Affairs Baker Institute for Public Policy, Rice University Electric Vehicles’ Onboard Energy Still Significantly Trails ICE Vehicles On an Efficiency-Adjusted Basis Efficiency-Adjusted Comparison • To make the energy density comparison a bit more fair, we adjust the onboard fuel based on the fact that EVs convert nearly 80% of their battery energy into tractive power at the wheels, while IC vehicles feature efficiencies closer to 20%. -
Vortech Engineering Performance Engine Parts
® FAQ How tight should I tighten the Vortech superchrrger retrnng rolt? About 25-30 ft./bb ib buggebted for the retiiiiig bo/tt tt ib i/bo recommeided thit i bmi// imouit of b/ue Loctte be ipp/ied to the threidb prior to iibertig the bo/t ii the iiput bhif iid ipp/y i bmi// imouit of iit-beiie oi the iiput bhif iid key before iibti//iig the buperchirger pu//eyt Why should I use Vortech pulleys? Some ioi-Vortech pu//eyb ivii/ib/e do iot provide the precibioi ft iid bi/iice which ire ebbeiti/ for performiice iid duribi/ity iid ire therefore iot recommeidedt Never force or himmer oi the pu//ey or buperchirger bhift The pu//ey bhou/d bire/y b/ip over the bhif whei it ib 75-80 degreeb Ft The key to keywiy ft ib i/bo critci/, ib ib bi/iicet A/wiyb ube i bmi// of oi/ or greibe oi the bhift Stee/ pu//eyb miy rubt thembe/veb to the bhif if iot /ubricitedt Why would r Vortech superchrrger relt come of or werr unevenly? The propeibity for grooved be/tb to move over oie or more grooveb, or come of comp/ete/y, ib i/wiyb due to ii i/igimeit prob/emt Either btitci//y (the pu//eyb ire mibi/igied due to ii iibti//itoi or to/eriice prob/em) or dyiimici//y (the /oidiig or ui/oidiig of the bybtem), miii/y the mouitig p/ite ciubeb mibi/igimeit due to fex or movemeitt Mibi/igimeit cii i/bo be ciubed by over-tghteiiig (iid fii/iig) of the be/t which miy be detrimeiti/ to the pu//ey beiriigt Crn I run r cog drve system wth r Vortech superchrrger? The oi/y Vortech buperchirger debigiitoib thit miy be drivei with i cogged type be/t drive ire heivy duty mode/bt -
State of California AIR RESOURCES BOARD EXECUTIVE ORDER D-493
(Page 1 of 2) State of California AIR RESOURCES BOARD EXECUTIVE ORDER D-493 Relating to Exemptions Under Section 27156 of the Vehicle Code DOWNING/ATLANTA, INC. BMW SUPERCHARGER KIT Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G-45-9; IT IS ORDERED AND RESOLVED: That the installation of the BMW Supercharger Kit, manufactured and marketed by Downing/Atlanta, Inc., 5096 Peachtree Road, Atlanta, Georgia 30341 has been ound not to reduce the effectiveness of the applicable vehicle pollution control system and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for 1999 and older BMW vehicles equipped with a four cylinder fuel injected engine. The BMW Supercharger Kit includes the following main components: Eaton M-62 supercharger, intake manifold, fuel regulator, and an open element air cleaner. The stock air cleaner may also be retained. No changes are made to the stock ignition system. The kit includes a 3.7" diameter supercharger pulley and uses the stock crankshaft pulley. Maximum boost is limited to 7.5 psi. This Executive Order is valid provided that the installation instructions for the BMW Supercharger Kit will not recommend tuning the vehicle to specifications different from those of the vehicle manufacturer. This Executive Order shall not apply to any Downing/Atlanta, Inc. BMW Supercharger Kit advertised, offered for sale, or sold with or installed on, a motor vehicle prior to or concurrent with transfer to an ultimate purchaser. -
Carbureted Fuel Pressure Regulators TB
Aeromotive, Inc. Technical Bulletin #201 From: Aeromotive Technical Department Date: 12/8/14 Re: Carbureted Fuel Pressure Regulators, Vacuum and Boost Reference: Aeromotive Carbureted Bypass Regulators: Why and how to use vacuum and boost reference. All Aeromotive, Carburetor Bypass are designed to allow the regulated fuel pressure to be vacuum or boost referenced on a 1:1 ratio with PSI. The purpose of the boost reference feature is to ensure fuel pressure at the inlet of the needle-and-seat rises with boost, offsetting any air pressure opposing fuel flow at the outlet of the needle and seat, in the float bowl itself. For “blow through” carbureted engines, where air is pushed or “blown” through the carburetor from a turbo or centrifugal supercharger, the carburetor and float bowls are pressurized, along with the intake. Pressure enters the float bowls via the vent tubes. As boost pressure builds in the intake, it also builds in the bowls, offsetting the pressure working to push fuel in through the needle and seat. Rising boost can act to slow or even stop fuel from entering the bowl, allowing it to run empty. By connecting the boost reference port on the regulator to the hat or carburetor box, the regulator will raise fuel pressure 1:1 with boost pressure, offsetting the rising air pressure and ensuring fuel continues to fill the bowl and feed the engine. The boost reference line on a blow through engine should reference positive pressure only (that is boost), not vacuum, and be connected to the carburetor box or hat rather than the intake manifold. -
Forced Induction Technologies in an IC Engine: a Review
9 VI June 2021 https://doi.org/10.22214/ijraset.2021.35582 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VI Jun 2021- Available at www.ijraset.com Forced Induction Technologies in an IC Engine: A Review Ranaji Arib Hafiz Ayyub Akbar Ahmedi PG Student, Heat Power Engineering Department, Shri Shankarprasad Agnihotri College of Engineering, Wardha, India Abstract: This study has been undertaken to show the performance enhancement of engines using different Forced induction technologies. Forced induction technology like turbocharging and supercharging can enhance the performance of an internal combustion engine by compressing inlet air charge, allowing full engine power to be produced efficiently. As the fuel economy and greenhouse emission standards are projected to be far more stringent globally, the use of a Forced induction engine in passenger cars and light-duty trucks has become an inevitable trend within the automotive industry. A turbocharger system can effectively improve the power and torque of an engine, but turbo hysteresis exists. A mechanical supercharging system can boost at low speed, but the efficiency is lower. An electric supercharger can effectively improve the intake air at the early stage of accelerated working conditions, however, an electric supercharger will consume the engine power. The addition of Forced induction technologies to an IC engine helps with the scope of downsizing it. This review brings forward all the aspects of Forced induction technologies Keywords: Forced Induction, Internal Combustion Engine, Turbocharging, Supercharging, Downsizing, Efficiency & Horsepower I. INTRODUCTION Forced induction technology enhances the performance of an internal combustion engine by compressing inlet air charge, allowing full engine power to be produced efficiently. -
The International System of Units (SI)
NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.