Graphs and Semibiplanes by Jennifer A. Muskovin

Total Page:16

File Type:pdf, Size:1020Kb

Graphs and Semibiplanes by Jennifer A. Muskovin On (0,2)-graphs and Semibiplanes by Jennifer A. Muskovin (Under the direction of Lenny Chastkofsky) Abstract A semibiplane is a connected point-block incidence structure such that any two points are in either 0 or 2 common blocks and any two blocks have either 0 or 2 common neigh- bors. A (0,2)-graph is a connected graph such that any pair of vertices has either 0 or 2 common neighbors. The incidence graph of a semibiplane is a bipartite (0,2)-graph. In this paper we construct (0,2)-graphs from known graphs by taking Cartesian products, quotients and adding matchings and construct semibiplanes by taking quotients of finite projective planes. Index words: (0,2)-graph, Biplane, Hypercube, Projective Plane, Semibiplane On (0,2)-graphs and Semibiplanes by Jennifer A. Muskovin B.S., Benedictine University, 2007 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2009 c 2009 Jennifer A. Muskovin All Rights Reserved On (0,2)-graphs and Semibiplanes by Jennifer A. Muskovin Approved: Major Professor: Lenny Chastkofsky Committee: Dino Lorenzini Robert Varley Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2009 Dedication To Mom and Papa iv Acknowledgments I would like to thank the faculty, staff and students within the Mathematics Department at UGA for encouraging me to finish writing. Specifically, thank you Lenny for giving me so much of your time this past year and for staying patient with me during my many struggles. I would also like to thank Joe for putting so much work into writing his paper. I admit that at times my motivation was knowing that you were consistently working until 2 a.m. Finally, thank you to Matt and Whitney for making me smile so many times this year. v Table of Contents Page Acknowledgments . v List of Figures . viii List of Tables . ix Chapter 1 Introduction and Background . 1 1.1 Graph Definitions and Examples . 1 1.2 Design Definitions and Examples . 4 2 Graph Constructions . 7 2.1 General Results of (0,2)-graphs . 7 2.2 Semibiplanes and (0,2)-graphs . 8 2.3 Cartesian Product of Graphs . 11 2.4 Quotient Graphs . 13 2.5 Bipartite Double . 16 2.6 Matchings . 18 3 Biplanes . 20 3.1 Existence of Symmetric Block Designs . 20 3.2 Existence of Biplanes . 22 4 Constructing Semibiplanes from Finite Projective Planes . 26 4.1 Collineations of a Finite Projective Plane . 28 4.2 Semibiplane Construction . 29 vi vii 4.3 Using GAP to Investigate PG(n,q) . 31 5 Hypercubes . 37 5.1 The Automorphism Group of Qk ................ 37 5.2 Quotients of Hypercubes Resulting in Nonbipartite Graphs 38 5.3 Quotients of Folded Qk ..................... 40 5.4 Quotients of coHeawood ×Qk .................. 43 Appendix A Code Used to Find “Good Conjugacy” Class Relations . 47 B Code to Construct Graphs of CoHeawood × Qk .......... 50 C Code to Construct SemiBiplane and Incidence Graph from Finite Projective Plane . 53 D Sample List of Bipartite Graphs from [2] ............... 55 Bibliography . 56 List of Figures 1.1 The octahedral graph with colored antipodal vertices . 2 1.2 Petersen Graph . 3 1.3 The Heawood Graph and coHeawood Graph . 4 1.4 The coHeawood Graph . 5 2.1 Given u, v, w in a (0,2)-graph we can find a unique y completing the quadrangle. 8 ∼ 2.2 K2 × Q2 = Q3 ................................... 12 2.3 Q3 and K4 ..................................... 14 2.4 Bipartite Double of Q2 .............................. 17 2.5 Q3 and K4 × K2 ................................. 19 4.1 Projective Plane of order n = 2: Fano Plane . 27 4.2 An Elation of the Fano Plane . 28 4.3 A Homology of a Projective Plane of Order 3 . 29 4.4 Constructing the incidence graph of the square from the Fano Plane . 31 5.1 Quotients of Q6 .................................. 41 5.2 Shrikhande graph with code labels . 42 viii List of Tables 3.1 Using Theorem 3.1.1 to find v given k, supposing such a design existed . 22 3.2 Known biplanes from [6]; * indicates the dual of a biplane . 24 4.1 Points and Lines of the Fano Plane . 27 4.2 Points and Lines of PG(2,4) . 32 4.3 Points and Blocks of the semibiplane . 33 4.4 Semibiplanes Constructed from Finite Projective Planes . 36 5.1 An Automorphism of Q3 ............................. 37 5.2 Graphs Isomorphic to Quotients of Λ × Qk, k = 2, 3, 4............. 46 D.1 ∆0.1 − ∆6.4 from [2] . 55 ix Chapter 1 Introduction and Background 1.1 Graph Definitions and Examples In this paper, we will assume that all graphs are finite, connected, simple undirected graphs. Unless otherwise specified we will use ∼ to denote adjacency. We will use Qk to denote the graph of the k-hypercube with valency k, V (Γ) and E(Γ) to denote the vertex set and edge set of a graph Γ and ∂(u, v) to denote the distance between vertices u and v. The remainder of this section contains the definitions we will need in the following chapters. A (0,2)-graph Γ is a connected graph with the property that any pair of vertices has 0 or 2 common neighbors. A (0,2)-graph without any triangles is called a rectagraph. In other words a rectagraph is a connected triangle-free graph with the property that every path of length two is in a unique quadrangle. Notice that a bipartite (0,2)-graph is a rectagraph. If Γ is a bipartite (0,2)-graph then it cannot contain any triangles. If it did, then it would force an adjacency between 2 vertices of the same partition of the vertex set. In particular, Qk is a rectagraph. An isomorphism between the graphs Γ and Γ0 is a bijection f : V (Γ) → V (Γ0) such that any two vertices u, v ∈ Γ are adjacent in Γ if and only if f(u) and f(v) are adjacent in Γ0. An isomorphism from Γ to itself is an automorphism of Γ. In other words, an automorphism of a simple graph Γ is just a permutation of its vertices with the same adjacency property. The set of all automorphisms of Γ along with the operation of composition forms a group called the automorphism group of Γ, denoted Aut(Γ). For some graphs, especially those of the hypercubes, it will be useful to label the vertices as binary code words or vectors. Let S=F2 and k ∈ N.A binary code of length k over S is a 1 2 Figure 1.1: The octahedral graph with colored antipodal vertices subset of Sk. The elements of the code are called code words and the support of a code word u is {i : ui 6= 0}. The distance between two code words is given by the number of positions in which the two differ. For instance, the distance between (0,1,0) and (1,1,1) is 2 while the distance between (0,1,0) and (1,0,1) is 3. We can alternatively define Qk as the graph with vertices all binary codes words of length 2k with an edge connecting two vertices when the distance between their respective code words is exactly 1. When the distance between two length k code words is k we say the code words are antipodal. The antipodal graph of a graph Γ has the same vertex set as Γ with an edge connecting u, v ∈ V (Γ) if the distance between u and v in Γ is equal to the diameter of Γ. We say a graph Γ with diameter d is antipodal if for any vertices u, v, w such that ∂(u, v) = ∂(u, w) = d either ∂(v, w) = d or v = w. The graphs of the hypercubes are antipodal graphs because every vertex has a unique vertex at a maximum distance from it. Example: The octahedral graph as pictured in Figure 1.1 is an example of an antipodal graph. The red vertices are antipodal as are the blue and green vertices. Let Γ be a graph with u ∈ V (Γ) we will use Γi(u) to denote the set of vertices v such that ∂(v, u) = i. A connected graph Γ is called distance regular if there are integers bi, ci 3 Figure 1.2: Petersen Graph (i ≥ 0) such that for any two vertices u, v of Γ at distance i from each other, there are precisely ci neighbors of v in Γi−1(u) and bi neighbors of v in Γi+1(u). The intersection array of a distance regular graph Γ is the sequence ι(Γ) := {b0, b1, ..., bd−1; c1, c2, ..., cd}. Note that the numbers in the intersection array are independent of u, v. Further, Γ is k − regular with k = b0 as b0 is by definition the number of vertices adjacent to a given vertex. It will also always be the case that bd = 0 because Γd+1(u) will be empty. Similarly, c0 is undefined as Γ−1(u) is empty. Clearly, Γ0(u) = 1 as u can only be of distance 0 away from itself so if ∂(u, v) = 1 then the number of neighbors of v in Γ0(u) is also 1 so c1 = 1. Example : Let Γ be the Petersen graph as labeled in Figure 1.2. The diameter of Γ is 3. Let u = 1. Then Γ1(u) = {2, 6, 5} and Γ2(u) = {3, 4, 7, 8, 9, 10}. Let v = 2 then ∂(v, u) = 1 0 0 so b1 = 2 as 2 ∼ 3, 7.
Recommended publications
  • Investigations on Unit Distance Property of Clebsch Graph and Its Complement
    Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K. Investigations on Unit Distance Property of Clebsch Graph and Its Complement Pratima Panigrahi and Uma kant Sahoo ∗yz Abstract|An n-dimensional unit distance graph is on parameters (16,5,0,2) and (16,10,6,6) respectively. a simple graph which can be drawn on n-dimensional These graphs are known to be unique in the respective n Euclidean space R so that its vertices are represented parameters [2]. In this paper we give unit distance n by distinct points in R and edges are represented by representation of Clebsch graph in the 3-dimensional Eu- closed line segments of unit length. In this paper we clidean space R3. Also we show that the complement of show that the Clebsch graph is 3-dimensional unit Clebsch graph is not a 3-dimensional unit distance graph. distance graph, but its complement is not. Keywords: unit distance graph, strongly regular The Petersen graph is the strongly regular graph on graphs, Clebsch graph, Petersen graph. parameters (10,3,0,1). This graph is also unique in its parameter set. It is known that Petersen graph is 2-dimensional unit distance graph (see [1],[3],[10]). It is In this article we consider only simple graphs, i.e. also known that Petersen graph is a subgraph of Clebsch undirected, loop free and with no multiple edges. The graph, see [[5], section 10.6]. study of dimension of graphs was initiated by Erdos et.al [3].
    [Show full text]
  • Maximizing the Order of a Regular Graph of Given Valency and Second Eigenvalue∗
    SIAM J. DISCRETE MATH. c 2016 Society for Industrial and Applied Mathematics Vol. 30, No. 3, pp. 1509–1525 MAXIMIZING THE ORDER OF A REGULAR GRAPH OF GIVEN VALENCY AND SECOND EIGENVALUE∗ SEBASTIAN M. CIOABA˘ †,JACKH.KOOLEN‡, HIROSHI NOZAKI§, AND JASON R. VERMETTE¶ Abstract. From Alon√ and Boppana, and Serre, we know that for any given integer k ≥ 3 and real number λ<2 k − 1, there are only finitely many k-regular graphs whose second largest eigenvalue is at most λ. In this paper, we investigate the largest number of vertices of such graphs. Key words. second eigenvalue, regular graph, expander AMS subject classifications. 05C50, 05E99, 68R10, 90C05, 90C35 DOI. 10.1137/15M1030935 1. Introduction. For a k-regular graph G on n vertices, we denote by λ1(G)= k>λ2(G) ≥ ··· ≥ λn(G)=λmin(G) the eigenvalues of the adjacency matrix of G. For a general reference on the eigenvalues of graphs, see [8, 17]. The second eigenvalue of a regular graph is a parameter of interest in the study of graph connectivity and expanders (see [1, 8, 23], for example). In this paper, we investigate the maximum order v(k, λ) of a connected k-regular graph whose second largest eigenvalue is at most some given parameter λ. As a consequence of work of Alon and Boppana and of Serre√ [1, 11, 15, 23, 24, 27, 30, 34, 35, 40], we know that v(k, λ) is finite for λ<2 k − 1. The recent result of Marcus, Spielman, and Srivastava [28] showing the existence of infinite families of√ Ramanujan graphs of any degree at least 3 implies that v(k, λ) is infinite for λ ≥ 2 k − 1.
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • The Projective Geometry of the Spacetime Yielded by Relativistic Positioning Systems and Relativistic Location Systems Jacques Rubin
    The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques Rubin To cite this version: Jacques Rubin. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems. 2014. hal-00945515 HAL Id: hal-00945515 https://hal.inria.fr/hal-00945515 Submitted on 12 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques L. Rubin (email: [email protected]) Université de Nice–Sophia Antipolis, UFR Sciences Institut du Non-Linéaire de Nice, UMR7335 1361 route des Lucioles, F-06560 Valbonne, France (Dated: February 12, 2014) As well accepted now, current positioning systems such as GPS, Galileo, Beidou, etc. are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. In a first step, we show how this conformal aspect can be the four-dimensional projective part of a larger five-dimensional geometry.
    [Show full text]
  • Convex Sets in Projective Space Compositio Mathematica, Tome 13 (1956-1958), P
    COMPOSITIO MATHEMATICA J. DE GROOT H. DE VRIES Convex sets in projective space Compositio Mathematica, tome 13 (1956-1958), p. 113-118 <http://www.numdam.org/item?id=CM_1956-1958__13__113_0> © Foundation Compositio Mathematica, 1956-1958, tous droits réser- vés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Convex sets in projective space by J. de Groot and H. de Vries INTRODUCTION. We consider the following properties of sets in n-dimensional real projective space Pn(n &#x3E; 1 ): a set is semiconvex, if any two points of the set can be joined by a (line)segment which is contained in the set; a set is convex (STEINITZ [1]), if it is semiconvex and does not meet a certain P n-l. The main object of this note is to characterize the convexity of a set by the following interior and simple property: a set is convex if and only if it is semiconvex and does not contain a whole (projective) line; in other words: a subset of Pn is convex if and only if any two points of the set can be joined uniquely by a segment contained in the set. In many cases we can prove more; see e.g.
    [Show full text]
  • Positive Geometries and Canonical Forms
    Prepared for submission to JHEP Positive Geometries and Canonical Forms Nima Arkani-Hamed,a Yuntao Bai,b Thomas Lamc aSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA bDepartment of Physics, Princeton University, Princeton, NJ 08544, USA cDepartment of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA Abstract: Recent years have seen a surprising connection between the physics of scat- tering amplitudes and a class of mathematical objects{the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra{which have been loosely referred to as \positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic sin- gularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of \positive geometries" and their associated \canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones{via \triangulation" on the one hand, and \push-forward" maps between geometries on the other. We present numerous examples of positive geome- tries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest \simplex-like" geometries and the richer \polytope-like" ones.
    [Show full text]
  • Characterization of Quantum Entanglement Via a Hypercube of Segre Embeddings
    Characterization of quantum entanglement via a hypercube of Segre embeddings Joana Cirici∗ Departament de Matemàtiques i Informàtica Universitat de Barcelona Gran Via 585, 08007 Barcelona Jordi Salvadó† and Josep Taron‡ Departament de Fisíca Quàntica i Astrofísica and Institut de Ciències del Cosmos Universitat de Barcelona Martí i Franquès 1, 08028 Barcelona A particularly simple description of separability of quantum states arises naturally in the setting of complex algebraic geometry, via the Segre embedding. This is a map describing how to take products of projective Hilbert spaces. In this paper, we show that for pure states of n particles, the corresponding Segre embedding may be described by means of a directed hypercube of dimension (n − 1), where all edges are bipartite-type Segre maps. Moreover, we describe the image of the original Segre map via the intersections of images of the (n − 1) edges whose target is the last vertex of the hypercube. This purely algebraic result is then transferred to physics. For each of the last edges of the Segre hypercube, we introduce an observable which measures geometric separability and is related to the trace of the squared reduced density matrix. As a consequence, the hypercube approach gives a novel viewpoint on measuring entanglement, naturally relating bipartitions with q-partitions for any q ≥ 1. We test our observables against well-known states, showing that these provide well-behaved and fine measures of entanglement. arXiv:2008.09583v1 [quant-ph] 21 Aug 2020 ∗ [email protected][email protected][email protected] 2 I. INTRODUCTION Quantum entanglement is at the heart of quantum physics, with crucial roles in quantum information theory, superdense coding and quantum teleportation among others.
    [Show full text]
  • PROJECTIVE GEOMETRY Contents 1. Basic Definitions 1 2. Axioms Of
    PROJECTIVE GEOMETRY KRISTIN DEAN Abstract. This paper investigates the nature of finite geometries. It will focus on the finite geometries known as projective planes and conclude with the example of the Fano plane. Contents 1. Basic Definitions 1 2. Axioms of Projective Geometry 2 3. Linear Algebra with Geometries 3 4. Quotient Geometries 4 5. Finite Projective Spaces 5 6. The Fano Plane 7 References 8 1. Basic Definitions First, we must begin with a few basic definitions relating to geometries. A geometry can be thought of as a set of objects and a relation on those elements. Definition 1.1. A geometry is denoted G = (Ω,I), where Ω is a set and I a relation which is both symmetric and reflexive. The relation on a geometry is called an incidence relation. For example, consider the tradional Euclidean geometry. In this geometry, the objects of the set Ω are points and lines. A point is incident to a line if it lies on that line, and two lines are incident if they have all points in common - only when they are the same line. There is often this same natural division of the elements of Ω into different kinds such as the points and lines. Definition 1.2. Suppose G = (Ω,I) is a geometry. Then a flag of G is a set of elements of Ω which are mutually incident. If there is no element outside of the flag, F, which can be added and also be a flag, then F is called maximal. Definition 1.3. A geometry G = (Ω,I) has rank r if it can be partitioned into sets Ω1,..., Ωr such that every maximal flag contains exactly one element of each set.
    [Show full text]
  • Arxiv:1810.02861V1 [Math.AG] 5 Oct 2018 CP Oyoileuto N Ae Xeddt Ufcsadhge Dim Using Higher Besides and Equations
    October 9, 2018 ALGEBRAIC HYPERSURFACES JANOS´ KOLLAR´ Abstract. We give an introduction to the study of algebraic hypersurfaces, focusing on the problem of when two hypersurfaces are isomorphic or close to being isomorphic. Working with hypersurfaces and emphasizing examples makes it possible to discuss these questions without any previous knowledge of algebraic geometry. At the end we formulate the main recent results and state the most important open questions. Contents 1. Stereographic projection 2 2. Projective hypersurfaces 4 3. Rational and birational maps 5 4. The main questions 8 5. Rationality of cubic hypersurfaces 10 6. Isomorphism of hypersurfaces 12 7. Non-rationalityoflargedegreehypersurfaces 14 8. Non-rationalityoflowdegreehypersurfaces 17 9. Rigidity of low degree hypersurfaces 18 10. Connections with the classification of varieties 18 11. Openproblemsabouthypersurfaces 19 References 21 Algebraic geometry started as the study of plane curves C R2 defined by a polynomial equation and later extended to surfaces and higher⊂ dimensional sets defined by systems of polynomial equations. Besides using Rn, it is frequently more advantageous to work with Cn or with the corresponding projective spaces RPn and n arXiv:1810.02861v1 [math.AG] 5 Oct 2018 CP . Later it was realized that the theory also works if we replace R or C by other fields, for example the field of rational numbers Q or even finite fields Fq. When we try to emphasize that the choice of the field is pretty arbitrary, we use An to denote affine n-space and Pn to denote projective n-space. Conceptually the simplest algebraic sets are hypersurfaces; these are defined by 1 equation.
    [Show full text]
  • Euclidean Versus Projective Geometry
    Projective Geometry Projective Geometry Euclidean versus Projective Geometry n Euclidean geometry describes shapes “as they are” – Properties of objects that are unchanged by rigid motions » Lengths » Angles » Parallelism n Projective geometry describes objects “as they appear” – Lengths, angles, parallelism become “distorted” when we look at objects – Mathematical model for how images of the 3D world are formed. Projective Geometry Overview n Tools of algebraic geometry n Informal description of projective geometry in a plane n Descriptions of lines and points n Points at infinity and line at infinity n Projective transformations, projectivity matrix n Example of application n Special projectivities: affine transforms, similarities, Euclidean transforms n Cross-ratio invariance for points, lines, planes Projective Geometry Tools of Algebraic Geometry 1 n Plane passing through origin and perpendicular to vector n = (a,b,c) is locus of points x = ( x 1 , x 2 , x 3 ) such that n · x = 0 => a x1 + b x2 + c x3 = 0 n Plane through origin is completely defined by (a,b,c) x3 x = (x1, x2 , x3 ) x2 O x1 n = (a,b,c) Projective Geometry Tools of Algebraic Geometry 2 n A vector parallel to intersection of 2 planes ( a , b , c ) and (a',b',c') is obtained by cross-product (a'',b'',c'') = (a,b,c)´(a',b',c') (a'',b'',c'') O (a,b,c) (a',b',c') Projective Geometry Tools of Algebraic Geometry 3 n Plane passing through two points x and x’ is defined by (a,b,c) = x´ x' x = (x1, x2 , x3 ) x'= (x1 ', x2 ', x3 ') O (a,b,c) Projective Geometry Projective Geometry
    [Show full text]
  • Eduard Čech, 1893–1960
    Czechoslovak Mathematical Journal Bohuslav Balcar; Václav Koutník; Petr Simon Eduard Čech, 1893–1960 Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 3, 567–575 Persistent URL: http://dml.cz/dmlcz/128420 Terms of use: © Institute of Mathematics AS CR, 1993 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Matheшatical Joumal, 43 (118) 1993, Praha NEWS AND NOTICES EDUARD CECH, 1893-1960 BOHUSLAV BALCAR, VÁCLAV KOUTNÍK, PETR SIMON, Praha This year we observe the 100th anniversary of the birthday of Eduard Cech, one of the leading world specialists in topology and differential geometry. To these fields he contributed works of fundamental importance. He was born on June 29, 1893 in Stracov in northeastern Bohemia. During his high school studies in Hradec Kralove he became interested in mathematics and in 1912 he entered the Philosophical Faculty of Charles University in Prague. At that time there were very few opportunities for mathematicians other than to become a high school teacher. For a position of a high school teacher two fields of study were required. Since Cech was not much interested in physics, the standard second subject, he chose descriptive geometry. During his studies at the university he spent a lot of time in the library of the Union of Czech Mathematicians and Physicists and read many mathematical books of his own choice.
    [Show full text]
  • On the Imbeddability of the Real Projective Spaces in Euclidean Space
    Pacific Journal of Mathematics ON THE IMBEDDABILITY OF THE REAL PROJECTIVE SPACES IN EUCLIDEAN SPACE WILLIAM SCHUMACHER MASSEY Vol. 9, No. 3 July 1959 ON THE IMBEDDABILITY OF THE REAL PROJECTIVE SPACES IN EUCLIDEAN SPACE1 W. S. MASSEY 1* Introduction. Let Pn denote ^-dimensional real projective space. This paper is concerned with the following question: What is the lowest dimensional Euclidean space in which Pn can be imbedded topologically or differentiably ? Among previous results along this line, we may mention the following; (a) If n is even, then Pn is a non-orientable manifold, and hence cannot be imbedded topologically in (n + l)-dimensional Euclidean space, Rn+1. (b) For any integer n > 1, Pn cannot be imbedded topologically in n+ R \ because its mod 2 cohomology algebra, H*(Pn, Z2), does not satisfy a certain condition given by R. Thorn (see [6], Theorem V, 15). IC 1 fc (c) If 2 ~ ^ n < 2 then Pn cannot be imbedded topologically in Euclidean space of dimension 2k — 1. This result follows from knowledge of the Stiefel-Whitney classes of Pn (see Thorn, loc. cit., Theorem III. 16 and E. Stiefel, [5]; also [4]). In the present paper, we prove the following result: If m = 2fc, k > 0, im then P3w_! cannot be imbedded differentiably in R . For example P5 s ιG cannot be imbedded differentiably in R , nor can Pn be imbedded in R . Of course if n > m, Pn cannot, a fortiori, be imbedded differentiably in R4m. Thus for many values of n our theorem is an improvement over previous results on this subject.1 The proof of this theorem depends on certain general results on the cohomology mod 2 of sphere bundles.
    [Show full text]