• Identification • Gramminoids • Forbs Common Grasses & Meadow Plants

Total Page:16

File Type:pdf, Size:1020Kb

• Identification • Gramminoids • Forbs Common Grasses & Meadow Plants Common Grasses & Meadow Plants Jim Kennedy, NH Coverts • Identification - Ecology - Agronomy - Gestalt • Gramminoids - Grasses - Sedges - Rushes • Forbs - Wildflowers - Legumes – Ferns - Weeds Enfield Shaker Museum - North Field Grasses - Identification 1 Characteristics of Forage and Pasture Grasses Found in the Northeast U.S. Species Growth Habit Seedhead Leaf Characteristics Other Characteristics Bluegrass (Poa spp.) Kentucky – P. pratensis Canada – P. compressa Short, low growing perennial grasses; they form a dense sod spreading by short rhizomes; Ky BG is dark green and Can. Midrib has two BG is blue-green grooves and is Leaves fold in bud translucent in shoot Kentucky Canada light Narrow leaves with boat shaped tip Many short rhizomes Panicle with very small seed Truncate ligules Leaves fold in bud shoot Annual bluegrass Poa annua An annual often found near gates and laneways where soil is compacted P. annua spp. reptans is a subspecies that is Leaves have boat shaped tip and double stoloniferous. grooved, translucent midrib when held in Small, short panicles An annual bunchgrass Pointed ligule crinkled leaves light; leaves folded in the bud shoot Roughstalk bluegrass Poa trivialis Creeping perennial Prefers shady, moist areas Leaves folded in bud shoot Spreads by stolons; forms dense patches Loose, green panicle Pointed ligule; rough surface Folded in bud shoot and leaf blades fold Orchardgrass Dactylis glomerata Tall growing bunchgrass; Long leaves that are lighter green compared to other grasses; Leaves strongly folded in bud shoot Panicle seed head with Prolific tillering grass Long, pointed ligule, Leaves strongly folded ball-like clumps no auricle • see handout for references & links * introduced species ✓ key feature The Gestalt of Grasses© Geastalt definition: the whole is greater than the sum of its parts Where & When How & What = Who Roadsides Fall Weedy Areas Purple Clouds purple lovegrass Sandy soil small seeds Eragrostis spectabilis Tumbleweeds Flag leaves Winter Wet meadows reed canary grass high stems Phalaris arundinacea thick patches Gramminoids (grass-like Plants) SEDGES RUSHES GRASSES have edges are round have joints down to the ground 1 bract under sac 6 bracts under capsule 2 bracts (glumes) (periginium) under floret Grasses - Types Bunch Grasses (cespitose) • orchard grass Sod-forming Grasses • red fescue (rhizomatous & stoloniferous) • quackgrass • brome grasses Cool Season Grasses (C3) Warm Season Grasses (C4) • bluegrasses • bluestems • fescues • switchrass • ryegrass • crabgrass WHERE - Ecological Groups HAYFIELD/PASTURE/LAWN you are RIPARIAN & FLOODPLAIN here WOODS UPLAND & WEEDY & PRAIRIES WASTE PLACES COVER CROPS & GRAINS WET MEADOWS ORNAMENTALS & MARSHES Grasslands & Meadows Workshop WET MEADOWS HAYFIELD/MEADOWS • reed canary grass • orchard grass* • wool grass • Kentucky bluegrass* • soft rush • timothy* • bulrush • meadow foxtail* • cattails • sweet vernal grass* • phragmites • smooth brome • bluejoint grass • perennial rye* • tussock sedge • narrow-leaved fescues* • fringed sedge • reed canary grass • sweet vernal grass* UPLANDS • wide-leaved fescues* • big bluestem • winter rye • little bluestem • barnyard grass • switch grass • quackgrass • indian grass • redtop • prairie cordgrass WEEDY/WASTE PLACES RIPARIAN & FLOODPLAIN • path rush • wild rye • quackgrass • fringed brome • crabgrasses WOODS • stinkgrass - On your own orchard grass* Dactylis glomerata turf grass, pastures - universal species ✓ ball-like clumps of 1- sided spikelets ✓ long pointed ligule ✓ very clumped form, wintergreen leaves Kentucky bluegrass* Poa pratensis turf grass, pastures - universal species ✓ boat-shaped leaf tip 3-5 branches/ ✓ grooved leaf node with transluscent midrib cobwebby hairs on lemma glumes shorter than first lemma ✓ open triangle- shape panicle Kentucky bluegrass* Poa pratensis turf grass, pastures - universal species ✓ gray blue triangle-shape panicle bleached, contracted head caused by pathogen Timothy* meadow foxtail* Phleum pratense Alopecurus pratensis Forage grass - hayfields hayfields ✓ pencil spike forked florets (meadow foxtail has awns) ✓ corms - “onions” sweet tasting stem base Timothy vs. Meadow Foxtail TextTextText Slide courtesy Sid Bosworth, UVM sweet vernal grass* barnyard grass* Anthoxanthum odoratum Echinochloa crus-galli Grasslands annual weed short brown spike- ✓ ✓ dark brown spiny like panicle panicle sweet smelling coarse leaves short bunch grass Reed canary grass bluejoint grass Phalaris arundinacea Calamagrostis canadensis Hayfields, Wet Meadows Marshes ✓ lines of leaves, stems, heads ✓ pencil spike forked florets (meadow foxtail has awns) ✓ pennant-shaped flag leaves long narrow rough leaves smooth brome* Native fringed bromeWarm Season Bromus inermis Bromus ciliatus Forage grass - hayfields Perennial Riparian areas, forageRhizomatous in West ✓ 1-sided long, thin ✓ drooping seed spikelets heads with paired with no awns florets short awns curly leaves - black fungal ✓ “M” in spots middle of leaf Native perennial rye* quackgrass*Warm Season Lolium perenne Elytrigia repens Perennial Turf & conservation, hayfields weedy pest Rhizomatous zig-zag stems zig-zag stems ✓ spikelets ✓ spikelets on EDGE FLAT “ryeee” “quaaak” leaf constriction at tip ✓ shiny leaves, ✓ long midrib clasping auricles ✓ long white roots Slide courtesy Sid Bosworth, UVM Canada wild ryeNative winter rye* Warm Season Secale cereale Elymus canadense Perennial Cover crop, conservation riparian areas Rhizomatous ✓ bristly seed heads ✓ gray-green stems, leaves indian grass big bluestemNative little bluestem Warm Season Schizachrium scoparium Sorghastrum nutalli Andropogon gerardiiPerennial warm season grass warm season grass warm seasonRhizomatous grass cloud of panicles, small fuzzy seed heads ✓ ✓ tumbleweeds ✓ long fuzzy seed heads ✓ turkey foot ✓ bunch grass growth forms ✓ tan, orange, purple fall colors fall panicum Native switchgrass Warm Season Panicum virgatum Panicum dichotomiflorumPerennial warm season grass weedy, waste areasRhizomatous ✓ cloud of panicles, tumbleweeds ✓ wide open panicles with single seeds ✓ tan fall color red fescue* sheep (hard) fescue*Native Festuca rubra < narrow-leaved fescues > Warm Season Festuca trachyphylla (ovina)Perennial Turf & conservation, dry fields conservation, dry fieldsRhizomatous tight inflorescence ✓ shorter glumes, awned lemmas ✓ rolled, thin leaves ✓ clumping habit meadow fescue* Native tall fescue*Warm Season Schedonorus pratensis < wide-leaved fescues > Schedonorus arundinaceusPerennial Forage, hay fields conservation, hayRhizomatous fields ✓ large open panicles ✓ bunch grasses ✓ wide corrugated lowest node leaves lowest node 1-branched 2-branched Photos courtesy Sid Bosworth, UVM smooth crabgrass* Native stinkgrass*Warm Season Digitaria ischaemum Eragrostis minorPerennial Universal weed weedy/wasteRhizomatous places short form ✓ contracted panicle multiple florets ✓ bunch grasses ✓ digitate (finger- shaped) raceme single florets tall form Photos courtesy Dennis Magee common reed cattail (not a grass) Phragmites australis Typhia latifolia marshes wetlands ✓ narrow, tight plumes ✓ shorter grass - narrower panicle ✓ large, open plumes wool grass dark green bulrush Cyperus cyperinus Scirpus atrovirens wet meadows, marshes wet meadows, compacted soils ✓ taller grass - wider, loose panicle ✓ shorter grass - narrower panicle soft rush path rush Juncus effusus Juncus tennuis wet meadows, marshes trails, compacted soils ✓ shorter grass - narrower panicle ✓ dark green clumps with brown heads ✓ compact grass-like look with brown seed heads tussock sedge fringed sedge Carex stricta Carex crinita wet meadows, marshes wet meadows, marshes ✓ wiry leaves ✓ heads hang down ✓ shorter grass - narrower panicle ✓ raised tussocks Common Meadow Plants • Wildflowers • Legumes • Ferns • Weeds ❁ pollinator value Early Flowers (not a grass) ❁ golden Alexanders ❁ common dandelion* blue flowers on Zizia aurea Taraxacum officinale spiky leaves ❁ blue lupine* blue flag iris Lupinus polyphyllus Iris versicolor Early Flowers (not a grass) blue flowers on ragged robin* spiky leaves Lychnis flos-cuculi buttercups Ranunculus spp. blue-eyed grass Sisyrinchium alanticum Daisies ox-eye daisey* Leucanthemum vulgare ❁ black-eyed Susan* Rudbeckia hirta Milkweeds ❁ common milkweed ❁ swamp milkweed Asclepias syriaca Asclepias incarnata ❁ butterfly milkweed Asclepias tuberosa ❁ Goldenrods outcurved Group 1 early/gray/seaside flowers, basal Solidago spp. leaves larger Group 2 outcurved tall/Canada/late Solidago spp. flowers, same- sized leaves Group 3 downy/hairy/white spiral flowers, Solidago spp. basal leaves larger Group 4 blue-stemmed/zig-zag/ spiral flowers, slender Solidago spp. same-sized leaves Group 5 grass-leaved/slender- flat-topped leaved flowers Euthamia spp. narrow leaves ❁ Asters ❁ New England ❁ flat-topped ❁ smooth blue aster white aster aster Symphyotrichum Doellingeria Symphyotrichium novae-angliae umbellata laeve Photos courtesy Toby Alexander, VT NRCS ❁ ❁ Legumes Slide courtesy Sid Bosworth, UVM Text Ferns sensitive fern hay-scented fern Onoclea sensibilis Dennstaedtia punctilobula interrupted/cinnamon fern Osmunda spp. Weeds Commonly Found Weeds in Vermont Pastures Sid Bosworth, Extension Professor, Department of Plant and Soil Science, University of Vermont [email protected] There are many weeds that can be found in pastures in Vermont. The following list represents some of the more commonly found species or some of the more problematic species. According to a 2010 survey
Recommended publications
  • Knowledge Document on the Impact of Priority Wetland Weeds
    Knowledge document on the impact of priority wetland weeds Step 2 – Impacts of priority wetland weeds Client Report for DELWP, Integrated Water and Catchments Division Arthur Ryah Institute for Environmental Research Acknowledgements This project has been undertaken with funding from Department of Environment, Land, Water and Planning (DELWP) Water and Catchments Group. Pam Clunie (Arthur Rylah Institute; DELWP) and Doug Frood (Pathways Bushland & Environment) provided valuable assistance in determining the scope of the project and filtering the wetland weed list. Phil Papas and Di Crowther (Arthur Rylah Institute; DELWP) are thanked for reviewing the draft. Author Weiss, J. and Dugdale, T. 2017. Knowledge document of the impact of priority wetland weeds: Step 2 – Impacts of priority wetland weeds. Report prepared for Department of Environment, Land, Water and Planning (DELWP) Water and Catchments Group by Agriculture Victoria. Photo credit Sagittaria platyphylla, Sagittaria, Delta Arrowhead (Anonymous, Agriculture Victoria, DEDJTR) © The State of Victoria Department of Environment, Land, Water and Planning 2017 This work is licensed under a Creative Commons Attribution 4.0 International licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning (DELWP) logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ ISBN 978-1-76047-452-2 (print) ISBN 978-1-76047-453-9 (pdf) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • VMG Kentucky Bluegrass Revised 2017
    Vol.1, No. 28 (Rev.). Approved 05/26/2017 VEGETATION MANAGEMENT GUIDELINE Kentucky Bluegrass (Poa pratensis L.) SPECIES CHARACTER DESCRIPTION Kentucky bluegrass is a perennial grass that may form a dense mat of short creeping rhizomes. Leaves are usually smooth, 0.08-0.4 inches (2-9 mm) wide, up to 15.8 inches (40 cm) long, flat to folded, with a boat-shaped tip. Sheaths surrounding the flowering stalk are rounded or flattened with ligules 0.03-0.2 inches (1-5 mm) long. Stems are numerous in a tuft and grow 12-36 inches (30-91 cm) high. The erect panicles are up to 36 inches (1 m) tall and pyramidal at top with distinct whorls of branches in the inflorescence. Flowers occur in oval spikelets from 0.1-0.2 inches (3-6 mm long) with three to six individual flowers in each spikelet. Bluegrasses (the genus Poa) are distinguished by their flat leaf blades, 2-6 flowered panicles, 1-3 nerved glumes (sterile scales at the base of a spikelet) and a tuft of cobwebby hairs at the base of the 5-nerved lemmas (small scales at the base of a floret). Grasses, in general, are fairly difficult to identify, and Kentucky bluegrass should be accurately identified before attempting any control measures. If identification of the species is in doubt, the plant's identity should be confirmed by a knowledgeable individual and/or by consulting appropriate manuals or keys. DISTRIBUTION Kentucky bluegrass occurs throughout Canada and south to Mexico. It is widespread in the United States, occurring in all 50 states, but is less common in the South.
    [Show full text]
  • REED CANARY GRASS) SEED to GERMINATION By
    RELATION OF CERTAIN PHYSICAL CHARACTERS OF PHALARIS ARUNDINACEAE (REED CANARY GRASS) SEED TO GERMINATION by HAROLD ErHJN FINNELL A THESIS subimitted to the OREGON STATE AGRICULTURAL COLLEGE in partial fulfilLuont of the requirementa for the degree of MASTER 0F SCIENCE June l96 t APPROVED: Profes3or of Farm Crops In Charge o Major Chairman of School Graduato Cozitteo Ohairîmn of Collego Graduate Council ACKNO LELOi:ÌNTs The writer wisnes to expres8 his deep appreciation to ruCeusor G. R. Hyslop, [load of the Farm Crops Depart- ment, for naking this study possible and for his many kindly ougei ions and aid th correction of the manuscript. Aciow1ec1gement is also duo Mrs. Grace Cole Fleiscbirian, Assistant Botanist, in charge cf the Cooperative Seed Testing Iboratory at the Oregon Stato Ariouitura1 Co11ee, for hor many suggestions and loaning of equipment. Thc wrIter 13 ccceodIng1y grateful to other person.s responsible in any way for any part of this study. CONTEIITS Introduction i Upland Rood Canary Grais 2 Historical Sketch 3 Problem 5 Purpose 5 Approach 5 Procedure G V.eight por Bushel and Volume Weight Studies G Volume Weight Method 7 Color Examination 7 Seed Condition 8 Germination Method B Discussion 9 Oregon Certification Standards 9 Origin of Standards li Laboratory Procedure li Germination 12 Counts 13 Special Testing Methods 14 Color and Weight per Bushel Studies 16 Vo lume Weight Data 19 Germination Test 21 Discussion (continued) rusty Seed 27 Average Analysis 29 Harvest ethods 31 Cone lus ion 33 Exhibit A 34 Exhibit B 35 Exhibit C 36 Bibliography 37 i RELATION OF CERTAIN PHYSICAL CHARACTERS OF PHALARIS ARUNDINACEAE (RETe CANARY GRASS) SETD TO GERLIINATION Introduct ion Throughout the years of conirnerciai production of Reed Canary grass seed (Phalaris arundinaceso) in Oregon, controversies have arisen between 'owers nd buyers because of misunderstandinrs on seed quality, perticularly with reference to germination.
    [Show full text]
  • Links Between Genetic Groups, Indole Alkaloid Profiles and Ecology Within the Grass-Parasitic Claviceps Purpurea Species Complex
    Toxins 2015, 7, 1431-1456; doi:10.3390/toxins7051431 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex Mariell Negård 1,2, Silvio Uhlig 1,3, Håvard Kauserud 2, Tom Andersen 2, Klaus Høiland 2 and Trude Vrålstad 1,2,* 1 Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; E-Mails: [email protected] (M.N.); [email protected] (S.U.) 2 Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; E-Mails: [email protected] (H.K.); [email protected] (T.A.); [email protected] (K.H.) 3 Department of the Chemical and Biological Working Environment, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-2321-6247. Academic Editor: Christopher L. Schardl Received: 3 January 2015 / Accepted: 22 April 2015 / Published: 28 April 2015 Abstract: The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS.
    [Show full text]
  • Kentucky Bluegrass (Poa Pratensis) DESCRIPTION: Originally from Europe (Not Kentucky), This Plant Is the Primary Component of Most Lawns
    Weed Identification and Control Sheet: www.goodoak.com/weeds Kentucky Bluegrass (Poa pratensis) DESCRIPTION: Originally from Europe (not Kentucky), this plant is the primary component of most lawns. Aside from corn, this may now be the most common grass in the eastern United States due to its dominance of our human landscape. This species often escapes cultivation and can be a problematic invasive species in our natural areas. Considerable time and resources are invested into maintaining this species in residential and corporate landscapes. Irrigating lawns uses up to 30% of municipal water supplies; this waste puts our long term supply of clean fresh water at risk. Pesticides, herbicides and petro- chemical fertilizers are spread on lawns at ten times the rate they are applied to agricultural lands. As a result, lawns are the primary source of pollution in lakes, streams and groundwater in urban and suburban areas. Exhaust from mowers and trimmers cause up to 33% of air pollution in urban areas. Lastly, these low mown lawns provide no habitat for our native wildlife, and as a result urban development is a leading cause of habitat loss. IDENTIFICATION: Though most people see this plant just about every day, few people look at it closely. Since there are often other non-native species of grasses in lawns, such as fescue, a few distinct features can help you tell Kentucky bluegrass apart when necessary. When not mown off, the leaf tips look like the front end or “keel” of a boat. Only grasses in the genus Poa have this feature. Also, when Kentucky bluegrass is not mown it will develop a distinctive panicle of small, green, wind- pollinated flowers.
    [Show full text]
  • Weed Risk Assessment for Phalaris Paradoxa L. (Poaceae)
    Weed Risk Assessment for Phalaris United States paradoxa L. (Poaceae) – Awned Department of canary-grass Agriculture Animal and Plant Health Inspection Service September 27, 2016 Version 1 Photos of Phalaris paradoxa from Rignanese (2007). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Phalaris paradoxa Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701- 7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). At the core of the process is the predictive risk model that evaluates the baseline invasive/weed potential of a plant species using information related to its ability to establish, spread, and cause harm in natural, anthropogenic, and production systems (Koop et al., 2012).
    [Show full text]
  • A List of Grasses and Grasslike Plants of the Oak Openings, Lucas County
    A LIST OF THE GRASSES AND GRASSLIKE PLANTS OF THE OAK OPENINGS, LUCAS COUNTY, OHIO1 NATHAN WILLIAM EASTERLY Department of Biology, Bowling Green State University, Bowling Green, Ohio 4-3403 ABSTRACT This report is the second of a series of articles to be prepared as a second "Flora of the Oak Openings." The study represents a comprehensive survey of members of the Cyperaceae, Gramineae, Juncaceae, Sparganiaceae, and Xyridaceae in the Oak Openings region. Of the 202 species listed in this study, 34 species reported by Moseley in 1928 were not found during the present investigation. Fifty-seven species found by the present investi- gator were not observed or reported by Moseley. Many of these species or varieties are rare and do not represent a stable part of the flora. Changes in species present or in fre- quency of occurrence of species collected by both Moseley and Easterly may be explained mainly by the alteration of habitats as the Oak Openings region becomes increasingly urbanized or suburbanized. Some species have increased in frequency on the floodplain of Swan Creek, in wet ditches and on the banks of the Norfolk and Western Railroad right-of-way, along newly constructed roadsides, or on dry sandy sites. INTRODUCTION The grass family ranks third among the large plant families of the world. The family ranks number one as far as total numbers of plants that cover fields, mead- ows, or roadsides are concerned. No other family is used as extensively to pro- vide food or shelter or to create a beautiful landscape. The sedge family does not fare as well in terms of commercial importance, but the sedges do make avail- able forage and food for wild fowl and they do contribute plant cover in wet areas where other plants would not be as well adapted.
    [Show full text]
  • Plant Fact Sheet for Pine Bluegrass (Poa Secunda)
    Plant Fact Sheet secunda as it occurs west of the Cascades in the PINE BLUEGRASS Pacific Northwest. Poa secunda J. Presl Uses: Pine bluegrass is a native cool season plant symbol = POSE bunchgrass of small to moderate stature useful for restoration of upland meadows, wet prairies, and pine Contributed by: USDA NRCS Plant Materials Center, or oak savanna, depending on region. While slow to Corvallis, Oregon establish, it is drought tolerant and useful for dry, rocky outcrops as well as moist, slower draining sites. Other uses include revegetation, rehabilitation after wildfire, erosion control in mixes with other grasses, upland bird habitat (nesting cover, source of seed), and natural area landscaping. Specific information on livestock and wildlife utilization of pine bluegrass west of the Cascades is lacking. However, on drier western rangelands, ecotypes within the Poa secunda complex have value for livestock grazing and big game forage, especially in early spring. Palatability prior to dormancy and again in fall is rated fair to good for most ungulates, small mammals, and certain birds. Productivity can be low, especially in dry years. Potential uses that need further testing west of the Cascades are low input lawns and cover crops in vineyards or other horticultural crops where its early summer dormancy may be beneficial. Description: Pine bluegrass is a fine textured, short to medium lived, strongly tufted perennial grass with erect culms (stems) 40-100 cm tall. Mature clumps are typically 10-16 cm wide and the foliage is light to medium green or slightly bluish, and mostly basal. Leaf blades are numerous, 1-2 mm wide, 5-22 cm long, flat to folded or rolled inward, and lax.
    [Show full text]
  • The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species
    agronomy Article The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species Tegan Darch 1,* , Steve P. McGrath 2 , Michael R. F. Lee 1,3 , Deborah A. Beaumont 1 , Martin S. A. Blackwell 1, Claire A. Horrocks 1, Jessica Evans 4 and Jonathan Storkey 2 1 Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK; [email protected] (M.R.F.L.); [email protected] (D.A.B.); [email protected] (M.S.A.B.); [email protected] (C.A.H.) 2 Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] (S.P.M.); [email protected] (J.S.) 3 Bristol Veterinary School, University of Bristol, Langford, Somerset BS40 5DU, UK 4 Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] * Correspondence: [email protected] Received: 21 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Mineral deficiencies in livestock are often prevented by using prophylactic supplementation, which is imprecise and inefficient. Instead, the trend for increased species diversity in swards is an opportunity to improve mineral concentrations in the basal diet. Currently, there are limited data on the mineral concentrations of different species and botanical groups, particularly for I and Se, which are among the most deficient minerals in livestock diets. We grew 21 pasture species, including some cultivar/wild type comparisons, of grasses, legumes and forbs, as single species stands in a pot study in a standard growth medium.
    [Show full text]
  • Ornamental Grasses
    order by phone at 800.380.4721 or online at germaniaseed.com | ORNAMENTAL GRASSES GRASSES, ORNAMENTAL GRASSES, ORNAMENTAL (continued) GRASSES, ORNAMENTAL (continued) 75° - 80 3 weeks ISOLEPIS LIVE WIRE (MULTI-SEED) - Luzula Lucius For the best germination; we suggest before 1199MP 15 in. - Sorry, no longer available. Zones: 6-9 sowing to refrigerate seed for 5 days and then j 6-12 in. - Scirpus cernuus. (Fiber Optic soak in warm water for 3 days. Sow thickly, in Grass). Close-tufted evergreen grass with fine MELINIS SAVANNAH - 1195 larger cells to develop nice stro ng plants within hair-like blades ending in a tuft of white florets. 6-12 in. - 46,000 S. M. nerviglumis. (Ruby the shortest time. Ideal as an aquatic. Primarily grown as an annu- Grass). This showy, ornamental grass forms al. MULTI-SEED PELLET contains 5-6 seeds per tight clumps of soft, blue-green foliage that AGROSTIS NEBULOSA - 1011 pellet. Zones: 8-10 grows 10 in. tall and wide. In June, ruby-pink $ 18 in. - 500,000 S. (Cloud Grass). Upright • (25B7) 25 sds-$7.15; 50 sds-$10.90; blooms emerge 18 in. above the foliage on verti- with green leaves and tiny spikelet flowers. A 100 sds-$15.85; 250 sds-$31.20; cal spikes. During summer, flowers turn creamy light, airy grass whose star-shaped panicles pro- 500 sds-$55.25 white. Stunning accent in fresh and dried duce cloud effects. Very decorative and used in arrangements. fresh or dried flower arrangements. JOB’S TEARS - 4498 • (28F7) 100 sds-$8.60; 200 sds-$13.90; • (34A7) 5,000 sds-$6.90; 10,000 sds-$10.10; $ 36-48 in.
    [Show full text]
  • Phylogenetic Analyses Reveal the Shady History of C4 Grasses Erika J
    Phylogenetic analyses reveal the shady history of C4 grasses Erika J. Edwardsa,1 and Stephen A. Smithb aDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; and bNational Evolutionary Synthesis Center, Durham, NC 27705 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved December 31, 2009 (received for review August 24, 2009) Grasslands cover more than 20% of the Earth's terrestrial surface, has provided a strong selection pressure for C4 evolution in and their rise to dominance is one of the most dramatic events of eudicots (4). Grasses have long been viewed as an interesting biome evolution in Earth history. Grasses possess two main photo- exception to this pattern (9). Significant positive correlations synthetic pathways: the C3 pathway that is typical of most plants between C4 grass abundance and growing season temperature and a specialized C4 pathway that minimizes photorespiration and have been documented at both continental and regional scales thus increases photosynthetic performance in high-temperature (10–13); C4 grasses dominate tropical grasslands and savannas and/or low-CO2 environments. C4 grasses dominate tropical and but are virtually absent from cool-temperate grasslands and subtropical grasslands and savannas, and C3 grasses dominate the steppes. Furthermore, both experimental measurements of world's cooler temperate grassland regions. This striking pattern photosynthetic light use efficiency (termed “quantum yield”), has been attributed to C4 physiology, with the implication that the and predictions of leaf models of C3 and C4 photosynthesis evolution of the pathway enabled C4 grasses to persist in warmer provide strong evidence that C4 grasses outperform C3 grasses at climates than their C3 relatives.
    [Show full text]