A comparison between quantum and classical noise radar sources Robert Jonsson Roberto Di Candia Martin Ankel 1Department of Microtechnology Department of Communications 1Department of Microtechnology and Nanoscience and Networking and Nanoscience Chalmers University of Technology Aalto University Chalmers University of Technology 2Radar Solutions, Saab AB Helsinki, Finland 2Radar Solutions, Saab AB Goteborg,¨ Sweden Email: roberto.dicandia@aalto.fi Goteborg,¨ Sweden Email:
[email protected] Anders Strom¨ Goran¨ Johansson Radar Solutions, Saab AB Department of Microtechnology Goteborg,¨ Sweden and Nanoscience Chalmers University of Technology Goteborg,¨ Sweden Abstract—We compare the performance of a quantum radar in the last decades [10], paving the way of implementing these based on two-mode squeezed states with a classical radar system ideas for building a first prototype of quantum radar. based on correlated thermal noise. With a constraint of equal The possible benefits of a quantum radar system are generally number of photons N transmitted to probe the environment, we S understood to be situational. In an adversarial scenario, it find that the quantum setup exhibitsp an advantage with respect to its classical counterpart of 2 in the cross-mode correlations. is beneficial for a radar system to be able to operate while Amplification of the signal and the idler is considered at different minimizing the power output, in order to reduce the probability stages of the protocol, showing that no quantum advantage for the transmitted signals to be detected. This property is is achievable when a large-enough gain is applied, even when commonly referred to as Low Probability of Intercept (LPI), quantum-limited amplifiers are available.