Coral Species Report for Isopora Crateriformis

Total Page:16

File Type:pdf, Size:1020Kb

Coral Species Report for Isopora Crateriformis LISTED CORALS IN THE INDO-PACIFIC Isopora crateriformis :: Biological Information MORPHOLOGY Pacific Islands Region Isopora crateriformis forms fattened solid encrusting plates. Colonies are brown in color and can sometimes be over 1 meter in diameter. When a colony occurs on a slope, the lower edge is usually lifed as a plate. Photos copyright: Douglas Fenner REPRODUCTION Te reproductive characteristics of Isopora crateriformis have not been determined, but other similar species of Isopora are simultaneous hermaphroditic (having both male and female gametes) brooders. Brooding species release sperm cells but fertilization of eggs occurs internally. :: Spatial Information GEOGRAPHIC RANGE Based on confrmed observations and strong predictions of occurrence in areas that have not yet been surveyed sufciently, Isopora crateriformis is likely distributed within the Coral Triangle area (the Philippines to Timor For more information contact: Leste and east to the Solomon Islands), plus some of the western Pacifc too, NMFS Pacifc Islands Regional Offce including New Caledonia, the Samoas, and the Marshall Islands. 1845 Wasp Blvd., Bldg. 176 Honolulu, HI 96818 Tel: 808-725-5000 Website: www.fpir.noaa.gov U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries NOAA Fisheries | Listed Corals in the Indo-Pacific:Isopora crateriformis LEGEND Region with confrmed record of species occurrence Region with predicted record of species occurrence Region with published record of species occurrence that needs further investigation Region with no record of species occurrence Veron JEN, Stafford-Smith MG, Turak E and DeVantier LM (in prep.) Corals of the World www.coralsoftheworld.com OCCURRENCE IN U.S. JURISDICTIONS Isopora crateriformis has not yet been reported from Guam, the Commonwealth of the Northern Mariana Islands (CNMI), and the Pacifc Remote Island Areas (PRIA). Based on the information below we consider Isopora crateriformis to occur in American Samoa. American Samoa: Brainard et al. (2011) report that this species has been reported in American Samoa by a variety of sources. Veron (2014) reports it from “Samoa” which implies it is in American Samoa, since he writes that all species found in the Tuvalu-Samoa-Tonga ecoregion are in American Samoa. It is also reported from “Samoa” by Wallace (1999) and Wallace et al. (2012), but the exact location for the samples in the Museum of North Queensland that this is based on is almost certainly American Samoa. It was also reported by Craig et al. (2001), Maragos and Kenyon (2004), and Green et al. (2005), as well as Fenner (2013). It appears that in parts of Tutuila, American Samoa, it may be the most abundant of anywhere in its range. HABITAT TYPES AND DEPTH Isopora crateriformis’s predominant habitat is shallow, high-wave energy environments, including reef fats and lower reef crests, and it also occurs in adjacent habitats such as upper reef slopes. It has been reported from low tide to at least 12 meters deep, and may occur in mesophotic depths (<50 meters). :: Demographic Information RELATIVE LOCALIZED ABUNDANCE Relative localized abundance refers to how commonly a species is observed on surveys in a localized area. Veron (2014) reports that Isopora crateriformis occupied 0.3 percent of 2,984 dive sites sampled in 30 ecoregions of the Indo- Pacifc. It was given an abundance rating on a scale of 1 (low) to 5 (high) at each site where it occurred, based on how common it was at that site. Isopora crateriformis had a mean abundance rating of 1.4. Based on this semi-quantitative system, the species’ abundance was characterized as “rare.” However, this rating could be an underestimate, as most coral abundance surveys are mostly carried out on reef slopes, which can signifcantly underestimate the abundance of species such as Isopora crateriformis that are more common on reef fats than reef slopes. Isopora crateriformis also is more abundant in American Samoa than in other parts of its range. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries NOAA Fisheries | Listed Corals in the Indo-Pacific:Isopora crateriformis ABSOLUTE OVERALL ABUNDANCE Absolute overall abundance refers to a rough qualitative minimum estimate of the total number of colonies of a species that currently exist throughout its range. Tese estimates were calculated based on results from Richards et al. (2008) and Veron (2014). Te absolute abundance of Isopora crateriformis is likely at least millions of colonies. :: Why is this Species Threatened? Isopora crateriformis is susceptible to the three major threats identifed for corals including ocean warming, disease, and ocean acidifcation, as well as many of the other threats to corals. A signifcant proportion of its current known geographic range is within the Coral Triangle area. Tis area is projected to have the most rapid and severe impacts from climate change and localized human impacts for coral reefs over the 21st century. Multiple ocean warming events have already occurred within the western equatorial Pacifc (which includes the Coral Triangle area) that suggest future ocean warming events may be more severe than average in this part of the world. A range constrained mostly to this particular geographic area that is likely to experience severe and increasing threats, combined with local occurrence categorized as rare, indicates that a high proportion of the population of this species is likely to be exposed to those threats over the foreseeable future. Tis, in combination with its other biological, demographic, and spatial characteristics, contributes to a risk of extinction within the foreseeable future for Isopora crateriformis. Literature Cited Brainard, R. E., C. Birkeland, C. M. Eakin, P. McElhany, M. W. Miller, M. Patterson, and G. A. Piniak. 2011. Status review report of 82 candidate species petitioned under the U.S. Endangered Species Act. NOAA Technical Memorandum NMFS‐PIFSC‐27. 530 pp. Craig, P., C. Birkeland, and S. Belliveau. 2001. High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20: 185-189. Fenner, D. 2013. Field guide to the Coral Species of the Samoan Archipelago: American Samoa and (independent) Samoa. Version 1.0. Dept. Marine & Wildlife Resources, American Samoa. pdf. 422 pp. Green, A., K. Miller, and C. Mundy. 2005. Long term monitoring of Fagatele Bay National Marine Sanctuary, Tutuila, American Samoa: results of surveys conducted in 2004, including a re-survey of the historic Aua Transect. Report prepared for the U.S. Dept. of Commerce and the American Samoa Government. 93 pp. Maragos, J. and J. Kenyon. 2004. Rose Atoll coral data compiled from US Fish and Wildlife Service 1994 “Townsend Cromwell” 2002 and “Sette” 2004 surveys. http://hercules.kgs.ku.edu/hexacoral/anemone2/reference_detail.cfm?ref_number=1934&type=Unpublish. Richards, Z. T., M. J. H. van Oppen, C. C. Wallace, B. L. Willis, and D. J. Miller. 2008. Some Rare Indo-Pacifc Coral Species Are Probable Hybrids. PLoS ONE 3(9):e3240. Veron, J. E. N. 2014. Results of an update of the Corals of the World Information Base for the Listing Determination of 66 Coral Species under the Endangered Species Act. Report to the Western Pacifc Regional Fishery Management Council, Honolulu. Wallace, C. C. 1999. Staghorn corals of the world: a revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. CSIRO Publishing, Collingwood, Australia. Wallace, C. C., Done, B. J., and Muir, P. R. (2012) Revision and catalog of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Memoires of the Queensland Museum/Nature 57: 1-255. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries.
Recommended publications
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Mirror-Image Fossils Reveal Colony Form of Extinct Curaçao Isopora
    Mirror-image fossils reveal colony form of extinct Curac¸ao Isopora Received: 12 January 2009 / Accepted: 25 March 2009 / Published online: 18 April 2009 Ó Springer-Verlag 2009 The extinct Caribbean coral species Isopora curacaoensis Budd and Wal- lace, 2008 occurred during ~6–3 Ma (Mio-Pliocene). It is found in Curac¸ao, Netherlands Antilles, with its congener Isopora ginsburgi Budd and Wallace, 2008 (~6–2 Ma). These are the earliest recorded occurrences of Isopora worldwide. Until now Isopora curacaoensis was known only from broken branches, which did not indicate any aspect of overall colony shape. On a visit to the Salina Sint Michiel, in the Seroe Domi Formation of Curac¸ao, in July 2008, a large rock with a broken section was found to contain numerous fossils of Isopora curacaoensis, in which the axes of the corallites and some of the coenosteum had been replaced, forming casts. Some of these had been split into left and right mirror-image pieces (Fig. 1). One was a large section of colony (approx. 200 · 200 mm), showing a full branching unit including vertical branch base, horizontally extending branch and a secondary series of vertical branches (Fig. 1b, c), indicating that this colony had an open arborescent or ‘candelabra’ form, similar to that seen in some living specimens of Isopora togianensis in Sulawesi, Indonesia (Wallace et al. 2007). The site is dated as early–mid Pliocene, absolute age range of 5.6–3 Ma (Budd et al. 1998). Also found here were the modern Acropora cervicornis and A. palmata, and the extinct A.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Scleractinia Fauna of Taiwan I
    Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99
    [Show full text]
  • Coral Communities at Lizard Island, Great Barrier Reef, Australia 57-67 ©Verein Zur Förderung Der Paläontologie Am Institut Für Paläontologie, Geozentrum Wien Beitr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 1996 Band/Volume: 21 Autor(en)/Author(s): Kleemann Karl Artikel/Article: Coral Communities at Lizard Island, Great Barrier Reef, Australia 57-67 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 21:57-67, Wien 1996 Coral Communities at Lizard Island, Great Barrier Reef, Australia Korallengemeinschaften auf der Lizard Insel, Großes Barriere Riff, Australien by Karl KLEEMANN* KLEEMANN, K., 1996. Coral Communities at Lizard Island, Great Barrier Reef, Australia. — Beitr. Palaont., 21:57-67, 2 Abb., 2 Tab., 2 Taf., Wien. Summary North Reel In general, the reefs at Lizard Island are dominated by Acropora. In part of the lagoon, Porites becomes the commonest and probably most important reefbuilder. In spite of the overall dominance of Acropora, the massive genera probably contribute more to the frame building. Probably more of their carbonate production keeps in place, while that of Acropora will be broken down, turned into sediment, and shifted away. Occurrence of certain genera can characterize Lizard reef localities: e.g., Porites (Synaraea) and Heliopora at a larger patch reef in the lagoon (RP lagoon); large Diploastrea colonies in steep reef walls, usually below 3 m, at more exposed sites (Site WM); common and large colonies of encrusting Montipora at a shallow slope (N Palfrey Is.) in about 3 m depth; and increased abundance of Goniastrea (Site C). In the hierarchical cluster analysis of 33 transects, we find two main clusters in the coral distribution, one with >50 % Acropora of the live scleractinian cover, and one with <50 %.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Paulay Et Al 1999
    Micronesica 31(2):109–124. 1999 Patterns and consequences of coral bleaching in Micronesia (Majuro and Guam) in 1992-1994 GUSTAV PAULAY Marine Laboratory University of Guam Mangilao, Guam 96923 USA [email protected] AND YEHUDA BENAYAHU Dept. of Zoology, George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel [email protected] Abstract—Loss of zooxanthellar symbionts from coral hosts, or “bleaching” has been increasingly noted since the 1980’s, and often attributed to elevated sea water temperatures. Here we document the first bleaching events recorded in Micronesia, one on Majuro Atoll in 1992 and another on Guam in 1994. The first caused up to 99% mortality of Acropora, altering the community structure of affected lagoonal fringing reefs from Acropora-and-Porites-dominated to Porites-dominated. Mortality of other scleractinians was low, but the common soft coral Lobophytum pauciflorum underwent large-scale dieback. Mortality in Majuro lagoon increased from west to east, peaking in the metropolitan area at the east end. The bleaching event on Guam was island-wide, in the warm season but not associated with unusually high temperatures, and associated with little mortality. Fifty-one of 75 surveyed taxa of corals bleached on Guam and 15 of 25 taxa on Majuro. Both scleractini- ans and alcyonaceans exhibited consistent species-specific sensitivity to bleaching among these and other locations in the tropical Pacific basin. The cause of these bleaching events is unclear, but the pattern on Majuro is suggestive of anthropogenic influence. Lack of bleaching at rural Mili Atoll 25 km from Majuro and lack of above average temperatures on Guam and Majuro suggest that regional ocean warming was not involved in either event.
    [Show full text]
  • Bulletin of the United States Fish Commission
    THE STONY CORALS OE THE PORTO RICAN WATERS. BY T: WAYLAND VAUGHAN. CONTENTS. Page. Page. Introduction 291 Discussion of Species—Continued. Table of Species 291 Class Anthozoa—Continued. Discussion of Species 292-318 Order Actiniae—Continued. Class Anthozoa 292 Family Favidae—Continued. Order Actiniae 292 Genus Manicina 305 Family Caryophyllidae 292 Manieina areolata 305 Genus Caryophyllia 292 Genus Platygyra 305,306 Caryophyllia berteriana? 292 Platygyra viridis 306-308 Genus Paracyathus 292 Family Agaricidse 309 Paracyathus de filippii 292 Genus Siderastrea 309 Genus Oyathoceras 293 Siderastrea radians 309 Cyathoceras portoricensis 293 Siderastrea siderea 309, 310 Genus Deltocyathus 293 Genus Agaricia 310 Deltocyathus italicus 293 Agaricia elephantotus 310 Agaricia sp 310, 311 Family Oculinidae 294 Agaricia cailleti 311 Genus Oculina 294 Genus Diaseris 311 Oculina diffusa? var 294 “ Diaseris ” crispa 311 Family Stylophoridse 294 Family Isoporidae 312 Genus Axhelia 294 Genus Isopora 312 Axhelia asperula 294 Isopora muricata 312, 313 Axhelia mirabilis 295 Isopora muricata ss. (== cervicornis) 313 Family Eusmilidae 295 Isopora muricata forma prolifera 313 Genus Meandrina 295 Isopora muricata forma palmata 313, 314 Meandrina maeandrites 296,297 Family Poritidae 314 Family Astrangidae 298 Genus Porites 314 Genus Cladocora 298 Porites porites 314-316 Cladocora arbuscula 298 Porites porites forma clavaria 316 Cladocora debilis 298 Porites porites forma furcata 316 Genus Astrangia 298 Porites porites forma divaricata 316 Astrangia solitaria? var. portoricensis 298,299 Porites astreoides 317 Astrangia astreiformis 300 Porites astreoides forma a 317 Family Orbicellidae 300 Porites astreoides forma /3 318 Genus Orbicella 300 Class Hydrozoa 318 Orbicella acropora var 301 Order Hydrocoral linse 318 Family Favidae 302 Family Milleporidae 318 Genus Favia 303 Genus Millepora 318 Favia fragum 303, 304 Millepora alcicornis 318 290 .
    [Show full text]
  • From Acropora (Isopora) Brueggemanni (Brook, 1893) (Anthozoa: Acroporidae), a Case of Host Specificity in a Generalist Genus
    ZM077 001-008 | achituv 15-01-2007 07:43 Pagina 1 Cantellius cardenae spec. nov. (Cirripedia: Pyrgomatinae) from Acropora (Isopora) brueggemanni (Brook, 1893) (Anthozoa: Acroporidae), a case of host specificity in a generalist genus Y. Achituv & B.W. Hoeksema Achituv, Y. & B.W. Hoeksema. Cantellius cardenae spec. nov. (Cirripedia: Pyrgomatinae) from Acropora (Isopora) brueggemanni (Brook, 1893) (Anthozoa: Acroporidae), a case of host specificity in a generalist genus. Zool. Med. Leiden 77 (1), 29.viii.2003: 1-8, figs 1-4, table 1.— ISSN 0024-0672. Yair Achituv, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel (e-mail: achity@mail. biu.ac.il). Bert W. Hoeksema, National Museum of Natural History, P.O. Box 9517. 2300 RA Leiden, The Nether- lands (e-mail: [email protected]). Key words: barnacle; corals; association; Cirripedia; Pyrgomatidae; Scleractinia; Acroporidae. A new species of coral inhabiting barnacle Cantellius cardenae spec. nov. (Crustacea, Cirripedia: Pyrgo- matinae) is described. This barnacle was found on the staghorn coral Acropora (Isopora) brueggemanni (Scleractinia: Acroporidae). It is characterized by having transversally elongated scuta and narrow terga with a spur length more than half of the total tergal length. This species belongs to the secundus group of Cantellius, which includes barnacles with transversally elongated scuta, and which are limit- ed to the Acroporidae. The distribution of C. cardenae supports the hypothesis that structurally special- ized pyrgomatines occupy a more limited variety of hosts than do morphologicaly generalized ones. Introduction The family Pyrgomatidae consist of barnacles largely limited to stony corals, (Scle- ractinia: Anthozoa), but some species occur on Milleporidae and Stylasteridae (Hydrozoa), and one occurs on a sponge (Porifera).
    [Show full text]
  • Australia's Coral
    Australia’s Coral Sea: A Biophysical Profile 2011 Dr Daniela Ceccarelli 2011 Dr Daniela Ceccarelli Coral Sea: A Biophysical Profile Australia’s Australia’s Coral Sea A Biophysical Profile Dr. Daniela Ceccarelli August 2011 Australia’s Coral Sea: A Biophysical Profile Photography credits Author: Dr. Daniela M. Ceccarelli Front and back cover: Schooling great barracuda © Jurgen Freund Dr. Daniela Ceccarelli is an independent marine ecology Page 1: South West Herald Cay, Coringa-Herald Nature Reserve © Australian Customs consultant with extensive training and experience in tropical marine ecosystems. She completed a PhD in coral reef ecology Page 2: Coral Sea © Lucy Trippett at James Cook University in 2004. Her fieldwork has taken Page 7: Masked booby © Dr. Daniela Ceccarelli her to the Great Barrier Reef and Papua New Guinea, and to remote reefs of northwest Western Australia, the Coral Sea Page 12: Humphead wrasse © Tyrone Canning and Tuvalu. In recent years she has worked as a consultant for government, non-governmental organisations, industry, Page 15: Pink anemonefish © Lucy Trippett education and research institutions on diverse projects requiring field surveys, monitoring programs, data analysis, Page 19: Hawksbill turtle © Jurgen Freund reporting, teaching, literature reviews and management recommendations. Her research and review projects have Page 21: Striped marlin © Doug Perrine SeaPics.com included studies on coral reef fish and invertebrates, Page 22: Shark and divers © Undersea Explorer seagrass beds and mangroves, and have required a good understanding of topics such as commercial shipping Page 25: Corals © Mark Spencer impacts, the effects of marine debris, the importance of apex predators, and the physical and biological attributes Page 27: Grey reef sharks © Jurgen Freund of large marine regions such as the Coral Sea.
    [Show full text]
  • Physiological and Biochemical Performances of Menthol- Induced Aposymbiotic Corals
    Physiological and Biochemical Performances of Menthol- Induced Aposymbiotic Corals Jih-Terng Wang1*, Yi-Yun Chen1, Kwee Siong Tew2,3, Pei-Jei Meng2,3, Chaolun A. Chen4,5* 1 Graduate Institute of Biotechnology, Tajen University, Pingtung, Taiwan, 2 National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, 3 Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, Taiwan, 4 Biodiversity Research Center and Taiwan International Graduate Program (TIGP)- Biodiversity, Academia Sinica, Taipei, Taiwan, 5 Institute of Oceanography, National Taiwan University, Taipei, Taiwan Abstract The unique mutualism between corals and their photosynthetic zooxanthellae (Symbiodinium spp.) is the driving force behind functional assemblages of coral reefs. However, the respective roles of hosts and Symbiodinium in this endosymbiotic association, particularly in response to environmental challenges (e.g., high sea surface temperatures), remain unsettled. One of the key obstacles is to produce and maintain aposymbiotic coral hosts for experimental purposes. In this study, a simple and gentle protocol to generate aposymbiotic coral hosts (Isopora palifera and Stylophora pistillata) was developed using repeated incubation in menthol/artificial seawater (ASW) medium under light and in ASW in darkness, which depleted more than 99% of Symbiodinium from the host within 4,8 days. As indicated by the respiration rate, energy metabolism (by malate dehydrogenase activity), and nitrogen metabolism (by glutamate dehydrogenase activity and profiles of free amino acids), the physiological and biochemical performances of the menthol-induced aposymbiotic corals were comparable to their symbiotic counterparts without nutrient supplementation (e.g., for Stylophora) or with a nutrient supplement containing glycerol, vitamins, and a host mimic of free amino acid mixture (e.g., for Isopora).
    [Show full text]