1 Description and Assessment of the Nature Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Salesforce Park Garden Guide
Start Here! D Central Lawn Children’s Play Area Garden Guide6 Palm Garden 1 Australian Garden Start Here! D Central Lawn Salesforce Park showcases7 California over Garden 50 species of Children’s Play Area 2 Mediterraneantrees and Basin over 230 species of understory plants. 6 Palm Garden -ã ¼ÜÊ ÊăØÜ ØÊèÜãE úØƀØÊèÃJapanese Maples ¼ÃØ Ê¢ 1 Australian Garden 3 Prehistoric¢ØÕè¼«ÕØÊ£ØÂÜÃã«ó«ã«Üŧ¼«¹ĆãÃÜÜ Garden 7 California Garden ¼ÜÜÜŧÊÃØãÜŧÃØ¢ã«Ã£¼ÜÜÜũF Amphitheater Garden Guide 2 Mediterranean Basin 4 Wetland Garden Main Lawn E Japanese Maples Salesforce Park showcases over 50 species of 3 Prehistoric Garden trees and over 230 species of understory plants. A Oak Meadow 8 Desert Garden F Amphitheater It also offers a robust year-round calendar of 4 Wetland Garden Main Lawn free public programs and activities, like fitness B Bamboo Grove 9 Fog Garden Desert Garden classes, concerts, and crafting classes! A Oak Meadow 8 5 Redwood Forest 10 Chilean Garden B Bamboo Grove 9 Fog Garden C Main Plaza 11 South African 10 Chilean Garden Garden 5 Redwood Forest C Main Plaza 11 South African Garden 1 Children’s Australian Play Area Garden ABOUT THE GARDENS The botanist aboard the Endeavor, Sir Joseph Banks, is credited with introducing many plants from Australia to the western world, and many This 5.4 acre park has a layered soil system that plants today bear his name. balances seismic shifting, collects and filters storm- water, and irrigates the gardens. Additionally, the soil Native to eastern Australia, Grass Trees may grow build-up and dense planting help offset the urban only 3 feet in 100 years, and mature plants can be heat island effect by lowering the air temperature. -
"Santalales (Including Mistletoes)"
Santalales (Including Introductory article Mistletoes) Article Contents . Introduction Daniel L Nickrent, Southern Illinois University, Carbondale, Illinois, USA . Taxonomy and Phylogenetics . Morphology, Life Cycle and Ecology . Biogeography of Mistletoes . Importance of Mistletoes Online posting date: 15th March 2011 Mistletoes are flowering plants in the sandalwood order that produce some of their own sugars via photosynthesis (Santalales) that parasitise tree branches. They evolved to holoparasites that do not photosynthesise. Holopar- five separate times in the order and are today represented asites are thus totally dependent on their host plant for by 88 genera and nearly 1600 species. Loranthaceae nutrients. Up until recently, all members of Santalales were considered hemiparasites. Molecular phylogenetic ana- (c. 1000 species) and Viscaceae (550 species) have the lyses have shown that the holoparasite family Balano- highest species diversity. In South America Misodendrum phoraceae is part of this order (Nickrent et al., 2005; (a parasite of Nothofagus) is the first to have evolved Barkman et al., 2007), however, its relationship to other the mistletoe habit ca. 80 million years ago. The family families is yet to be determined. See also: Nutrient Amphorogynaceae is of interest because some of its Acquisition, Assimilation and Utilization; Parasitism: the members are transitional between root and stem para- Variety of Parasites sites. Many mistletoes have developed mutualistic rela- The sandalwood order is of interest from the standpoint tionships with birds that act as both pollinators and seed of the evolution of parasitism because three early diverging dispersers. Although some mistletoes are serious patho- families (comprising 12 genera and 58 species) are auto- gens of forest and commercial trees (e.g. -
Common Birds in Tilligerry Habitat
Common Birds in Tilligerry Habitat Dedicated bird enthusiasts have kindly contributed to this sequence of 106 bird species spotted in the habitat over the last few years Kookaburra Red-browed Finch Black-faced Cuckoo- shrike Magpie-lark Tawny Frogmouth Noisy Miner Spotted Dove [1] Crested Pigeon Australian Raven Olive-backed Oriole Whistling Kite Grey Butcherbird Pied Butcherbird Australian Magpie Noisy Friarbird Galah Long-billed Corella Eastern Rosella Yellow-tailed black Rainbow Lorikeet Scaly-breasted Lorikeet Cockatoo Tawny Frogmouth c Noeline Karlson [1] ( ) Common Birds in Tilligerry Habitat Variegated Fairy- Yellow Faced Superb Fairy-wren White Cheeked Scarlet Honeyeater Blue-faced Honeyeater wren Honeyeater Honeyeater White-throated Brown Gerygone Brown Thornbill Yellow Thornbill Eastern Yellow Robin Silvereye Gerygone White-browed Eastern Spinebill [2] Spotted Pardalote Grey Fantail Little Wattlebird Red Wattlebird Scrubwren Willie Wagtail Eastern Whipbird Welcome Swallow Leaden Flycatcher Golden Whistler Rufous Whistler Eastern Spinebill c Noeline Karlson [2] ( ) Common Sea and shore birds Silver Gull White-necked Heron Little Black Australian White Ibis Masked Lapwing Crested Tern Cormorant Little Pied Cormorant White-bellied Sea-Eagle [3] Pelican White-faced Heron Uncommon Sea and shore birds Caspian Tern Pied Cormorant White-necked Heron Great Egret Little Egret Great Cormorant Striated Heron Intermediate Egret [3] White-bellied Sea-Eagle (c) Noeline Karlson Uncommon Birds in Tilligerry Habitat Grey Goshawk Australian Hobby -
Their Botany, Essential Oils and Uses 6.86 MB
MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy, Lyndley A. Craven and John C. Doran MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy School of Chemistry, University of New South Wales Lyndley A. Craven Australian National Herbarium, CSIRO Plant Industry John C. Doran Australian Tree Seed Centre, CSIRO Plant Industry 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Brophy J.J., Craven L.A. and Doran J.C. 2013. Melaleucas: their botany, essential oils and uses. ACIAR Monograph No. 156. Australian Centre for International Agricultural Research: Canberra. -
Vegetation of Durokoppin and Kodj Kodjin Nature Reserves
II VEGETATION OF DUROKOPPIN AND KODJ KODJIN NATURE RESERVES B.G. MUIR INTRODUCfION Durokoppin Reserve (DR) and Kodj Kodjin Reserve (KKR) both fall within the Avon district of the South-west Botanical Province of Gardner and Bennetts (1956) and the vegetation of the Reserves largely conforms to that generally found throughout this region. Abbreviated vegetation descriptions of DR appear in Appendix 1 and of KKR in Appendix 3. Full descriptions of the vegetation following the format presented in Muir (1977a) have been lodged in the Archives of Western Australian Museum; details are available on request from the Librarian. A description of the road verge connecting DR and KKR is given at the end of Appendix 1. Methodology The vegetation of DR and KKR was mapped at Level 2 of the reliability scale set out in Muir (1977a). Each vegetation formation discernible on the air photographs was examined on the ground; this information was then extrapolated to adjacent formations. Uncleared land contiguous to the Reserves but not included within them was mapped at formation level directly from the photographs (Level 3). Level 2 locations, shown on vegetation Maps 1 and 2 represent 'sample areas' where the vegetation was examined and described using the classifica tion shown in Table 1 and discussed in detail in Muir (1977a). The following prefix numbers of the locations represent basic formation types. 1 woodland formations 5 lithic complexes 2 mallee formations 6 breakaway complexes 3 shrubland formations 7 salt complexes 4 heaths 8 other Level 3 locations are shown on the maps prefixed by: W = woodland formations M = mallee formations The methods used in classifying formations, coding habitat data, preparing plant lists, classifying litter and describing soils are those of Muir (1977a). -
Inventory of Taxa for the Fitzgerald River National Park
Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract .............................................................................................................................. -
Phytophthora Science and Management in Western Australia
From ‘then to now’ – Phytophthora science and management in Western Australia • Work from many Postdocs, PhD and Honours students Overview of Talk Disease development and long-term survival of Phytophthora cinnamomi and can we eradicate it? • Overview of Phytophthora impact in Australia. • Alcoa’s mining and restoration activities. • Emphasis on the biology, ecology, pathology and control of Phytophthora cinnamomi in the jarrah forest. • Will not talk about phosphite work, plantation work, or climate change and woodland and forest health research. Phytophthora Taxonomy • Phytophthora species are ‘Water Moulds’ or Oomycetes they are not True Fungi • More closely related to brown algae than fungi • Filamentous Protists - Kingdom Chromista Currently, approximately 150 Phytophthora species described worldwide Estimated another 100-300 species will be described from trees P. cinnamomi isolations and broad climatic envelope of P. cinnamomi susceptibility in Australia (O’Gara et al. 2005b) Eucalyptus marginata (jarrah) forest Kwongan heaths Severely infested ‘Black gravel’ site Banksia Woodland on Bassendean Sands South of Perth Fitzgerald River National Park Loss of susceptible species Along creek lines Healthy montane heath in Stirling Ranges Diseased health in Stirling Ranges Impact of Phytophthora cinnamomi on plant species in Western Australia Direct Impacts • Out of 5710 described species in the South-West Botanical Province • 2285 species susceptible (40%) • 800 highly susceptible (14%) Indirect Impacts Indirect Impacts • Loss of biomass -
Nuytsia the Journal of the Western Australian Herbarium 30: 309–316 Published Online 10 December 2019
B.L. Rye & T.D. Macfarlane, A new name and a new subspecies for Isopogon (Proteaceae) 309 Nuytsia The journal of the Western Australian Herbarium 30: 309–316 Published online 10 December 2019 A new name, clarification of synonymy, and a new subspecies for Isopogon (Proteaceae) in Western Australia Barbara L. Rye and Terry D. Macfarlane Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Abstract Rye, B.L. & Macfarlane, T.D. A new name, clarification of synonymy, and a new subspecies for Isopogon (Proteaceae) in Western Australia. Nuytsia 30: 309–316 (2019). Isopogon drummondii Benth. nom. illeg. is lectotypified and replaced by the new name I. autumnalis Rye & T.Macfarlane while I. drummondii Hügel ex Jacques is recognised as a probable synonym of I. sphaerocephalus Lindl. The new subspecies I. sphaerocephalus subsp. lesueurensis Rye is described. Introduction This paper undertakes to settle the uncertainty around the name of a Western Australian species of Isopogon R.Br. (Proteaceae), the solution to which involves a second species, in which a new subspecies is recognised. In his treatment of Isopogon for the Flora of Australia, Foreman (1995) described one species as I. sp. A because he was uncertain whether the name I. drummondii Hügel ex Jacques (Jacques 1843) applied to it. A later-published name with the same epithet, I. drummondii Benth. (Bentham 1870), does apply to Foreman’s species A but cannot be used because it is an illegitimate later homonym. The name I. drummondii Hügel ex Jacques was not mentioned by Bentham (1870), possibly because it was published in a horticultural context. -
7008 Australian Native Plants Society Australia Hakea
FEBRUARY 20 10 ISSN0727 - 7008 AUSTRALIAN NATIVE PLANTS SOCIETY AUSTRALIA HAKEA STUDY GROUP NEWSLETTER NUMBER 42 Leader: Paul Kennedy PO Box 220 Strathmerton,Vic. 3 64 1 e mail: hakeaholic@,mpt.net.au Dear members. The last week of February is drawing to a close here at Strathrnerton and for once the summer season has been wetter and not so hot. We have had one very hot spell where the temperature reached the low forties in January but otherwise the maximum daily temperature has been around 35 degrees C. The good news is that we had 25mm of rain on new years day and a further 60mm early in February which has transformed the dry native grasses into a sea of green. The native plants have responded to the moisture by shedding that appearance of drooping lack lustre leaves to one of bright shiny leaves and even new growth in some cases. Many inland parts of Queensland and NSW have received flooding rains and hopefully this is the signal that the long drought is finally coming to an end. To see the Darling River in flood and the billabongs full of water will enable regeneration of plants, and enable birds and fish to multiply. Unfortunately the upper reaches of the Murray and Murrurnbidgee river systems have missed out on these flooding rains. Cliff Wallis from Merimbula has sent me an updated report on the progress of his Hakea collection and was complaining about the dry conditions. Recently they had about 250mm over a couple of days, so I hope the species from dryer areas are not sitting in waterlogged soil. -
Effectiveness of Native Nectar-Feeding Birds and the Introduced Apis Mellifera As Pollinators of the Kangaroo Paw, Anigozanthos
1 Effectiveness of native nectar-feeding birds and the introduced Apis mellifera as 2 pollinators of the kangaroo paw, Anigozanthos manglesii (Haemodoraceae) 3 Bronwyn M. Ayre1,2, *, David G. Roberts2,5, Ryan D. Phillips2,3,4, Stephen D. Hopper5, Siegfried L. Krauss1,2 4 1School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia, 2Kings Park 5 Science, Department of Biodiversity, Conservation and Attractions, Perth, WA 6005, Australia, 3Department of 6 Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia, 4Ecology and 7 Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia 8 and 5Centre for Excellence in Natural Resource Management, School of Agriculture and Environment, 9 University of Western Australia, Albany, WA 6330, Australia 10 Running title: Birds, bees and Kangaroo Paw pollination 11 Summary text (table of contents): Plants pollinated by vertebrates are often visited by native and 12 introduced insect species foraging for pollen and nectar, with potentially negative consequences for 13 plant fitness. European Honeybees are the most common visitor to the Red and Green Kangaroo Paw 14 but primarily steal nectar and pollen, with native nectar-feeding birds critical for high reproductive 15 success. For many plant species, the relative importance of bird-pollinators and exotic insect species 16 remains largely unknown. 1 17 Abstract: 18 Plants pollinated by vertebrates are often visited by native and exotic insects foraging for pollen and 19 nectar. We compared flower visitation rates, foraging behaviour, and the contribution to reproduction 20 of nectar-feeding birds and the introduced honeybee Apis mellifera in four populations of the bird- 21 pollinated Anigozanthos manglesii (Haemodoraceae). -
Focusing on the Landscape Biodiversity in Australia’S National Reserve System Contents
Focusing on the Landscape Biodiversity in Australia’s National Reserve System Contents Biodiversity in Australia’s National Reserve System — At a glance 1 Australia’s National Reserve System 2 The Importance of Species Information 3 Our State of Knowledge 4 Method 5 Results 6 Future Work — Survey and Reservation 8 Conclusion 10 Summary of Data 11 Appendix Species with adequate data and well represented in the National Reserve System Flora 14 Fauna 44 Species with adequate data and under-represented in the National Reserve System Flora 52 Fauna 67 Species with inadequate data Flora 73 Fauna 114 Biodiversity in Australia’s National Reserve System At a glance • Australia’s National Reserve System (NRS) consists of over 9,000 protected areas, covering 89.5 million hectares (over 11 per cent of Australia’s land mass). • Australia is home to 7.8 per cent of the world’s plant and animal species, with an estimated 566,398 species occurring here.1 Only 147,579 of Australia’s species have been formally described. • This report assesses the state of knowledge of biodiversity in the National Reserve System based on 20,146 terrestrial fauna and flora species, comprising 54 per cent of the known terrestrial biodiversity of Australia. • Of these species, 33 per cent (6,652 species) have inadequate data to assess their reservation status. • Of species with adequate data: • 23 per cent (3,123 species) are well represented in the NRS • 65 per cent (8,692 species) are adequately represented in the NRS • 12 per cent (1,648 species) are under- represented in the NRS 1 Chapman, A.D. -
800.438.7199 Fax: 805.964.1329 Local: 805.683.1561 Web: on Facebook.Com/Sanmarcosgrowers
Toll Free: 800.438.7199 Fax: 805.964.1329 Local: 805.683.1561 Web: www.smgrowers.com On facebook.com/SanMarcosGrowers Since 1979, when San Marcos Growers first began, we have always strived to provide California's independent retail garden centers and landscape professionals with well grown, high quality plants, that are appropriate to California's mediterranean climate. After thirty two years, this still remains our primary goal. Others may be focusing elsewhere, but we remain firmly committed to the independent retailers and landscape professionals that have long been loyal to us. We thank our customers for their continued business and offer them this 2011 catalog with many exciting new plants, but no overall price increases. We also remain committed to the fact that water remains a precious and limited commodity. To this end we continue to expand our line of water conserving succulents and plants from mediterranean climates, including many from our own California flora. This catalog has 145 new plants, which are all listed at the back of this catalog and are accompanied within the catalog body with a star ( ). Of these new plants, 56 are succulents, bringing the total number of succulents we now grow to 379, and 29 are California native plants, bringing our total of native plants to 156. We also are proud to offer 9 new plants from the UC Santa Cruz Koala Blooms Australian Native Plant program and so now are growing 29 great plants from this program and bringing to 190 the total number of different Australian plants that we currently grow.