Breeding Biology of Bellbirds (<Em Class="Sciname">Anthornis

Total Page:16

File Type:pdf, Size:1020Kb

Breeding Biology of Bellbirds (<Em Class= Notornis, 2003, Vol. 50: 75-82 0029-4470 O The Ornithological Society of New Zealand, Inc. 2003 Breeding biology of bellbirds (Anthornis melanura) on Tiritiri Matangi Island SANDRA H. ANDERSON School of Geography and Environmental Sciences, University of Auckland, Private Bag 92019, Auckland [email protected] JOHN L. CRAIG School of Geography and Environmental Sciences, University of Auckland, Private Bag 92019, Auckland Abstract Bellbird breeding activity was monitored on Tiritiri Matangi Is in 1977 and 1978. The density of bellbirds breeding within the study area was 2.13 pairs ha-'. Resighting of banded adult birds in consecutive years was 69% and less than half the pair bonds were maintained into the following season. Breeding extended from Oct to Jan, with a peak in Nov. Most nests were built in tree ferns, and the mean clutch size was 3.6 eggs. Incubation and nestling periods were c. 12 and 14 days, respectively. The female bellbird was significantly more active than the male in care of the nestlings. Measurements of chick head and wing length were correlated with age. Nest success was 44%, and daily survival rate 97%. Predation, desertion, and exposure contributed to nest failure, and re-nesting was common. The mean number of nests female-' season-' was 1.3, while mean reproductive success was 2 chicks fledged. Young were independent 2 weeks after fledging, and moulted to adult plumage in their 1st year. The dynamics of the Tiritiri Matangi population, when compared with other populations, suggest that breeding behaviour is a flexible response to environ- mental factors, and will vary between populations depending on the level of predation, competition and habitat quality. Anderson, S.H.; Craig, J.L. 2003. Breeding biology of bellbirds (Anthornis melanura) on Tiritiri Matangi Island. Notornis SO(2): 75-82. Keywords bellbird; Anthornis melanura; breeding biology; reproductive success; population dynamics; Tiritiri Matangi Island INTRODUCTION the potential for successful future management of The bellbird (Anthornis melanura) is a small the species. The study characterises the breeding honeyeater (Meliphagidae) endemic to the islands of behaviour of bellbird on Tiritiri Matangi and New Zealand. Bellbirds formerly occurred through- identifies trends in the timing and duration of out New Zealand, including most offshore islands each breeding stage. Aspects of the population from the Three Kings Islands (31%) to the Auckland dynamics are compared with those of bellbirds on Islands (5405), but are now rare north of 3805. All other offshore islands and the mainland of New New Zealand honeyeaters suffered a decline in the Zealand. The role of predators, competitors, and north during the 1860s (Buller 1873; Turbott 1961; habitat quality in the dynamics of bellbird Craig & Douglas 1984). The stitchbird (Notiomystis populations is discussed. The proposal that cincta), which is the most subordinate of the 3 bellbirds on the Poor Knights be classified as a species (Craig et al. 1981b; Craig 1984), was reduced distinct subspecies from bellbirds in the North to a single population on an offshore island. Island (Bartle & Sagar 1987) is also examined. Whereas the largest and most dominant of the 3 species, the tui Prosthemadera novaeseelandiae (Craig METHODS AND STUDY SITE et al. 1981a)has returned to all areas except the Three Study area Kings Is, bellbirds have not re-established in the Bellbirds were studied on Tiritiri Matangi Island, northern mainland. Reasons for the decline are situated in the Hauraki Gulf 25 km north of uncertain, and although a number of attempts have Auckland, New Zealand. At the time of study, the been made to re-establish bellbird into northern bellbird population was c. 150 and much of the forests all transfers have been largely unsuccessful. island's 220 ha was rough pasture, with pockets of In contrast, on even northerly offshore islands, the remnant forest totalling <20 ha. The study bellbird is common and in the absence of introduced was conducted primarily in the largest (4 ha) forest mammalian predators attains high densities relative patch, shortly after grazing had ceased and to the mainland (Bartle & Sagar 1987). the island vegetation had been left to regenerate. The aim of this paper is to expand the baseline The study forest comprised mixed coastal information on bellbird ecology, thereby increasing species, with a canopy including kohekohe (Dysoxylum spectabile), taraire (Beilschmiedia farairi), Received 30 March 2002; 29 August 2002 mahoe (Melicytus ramiflorus), and pohutukawa 76 Anderson & Craig (Metrosideros excelsa). Individual rewarewa estimate and confidence intervals for nest success (Knightia excelsa) and a single puriri (Vitex lucens) of bellbirds on Tiritiri Matangi. To obtain an were important nectar sources. The shrubs indication of population dynamics, the number of Coprosma rhamnoides, C. areolata, and Geniostoma breeding attempts and productivity female-' were ligustrifolium provided a late season fruit source also calculated. Factors contributing to nest failure within the study forest. Bellbird activity in the were identified where possible. coastal and valley areas adjacent to the study forest was also observed. The vegetation of these areas Parental role was dominated by New Zealand flax (Phormium Active nests were observed routinely at a discrete tenax), ti (Cordyline australis), kanuka (Kunzea distance for 1-h periods, to compare activity ericoides), manuka (Leptospermum scoparium), between progressive breeding stages and determine and pohutukawa. the relative role of each parent. The parent was identified at each visit to the nest, and where Distribution possible food items brought to the nest were also The 4 ha study forest was gridded at 15 m identified. The duration of visits to the nest, and time intervals. Adult birds using the study area had intervals between visits, were recorded using a previously been captured in mistnets and individual- stopwatch. Where duration exceeded the 60-min ly colour-banded. Individuals were identified on observation period, the minimum time was sighting and their position plotted to provide an recorded. Eleven nests from 9 pairs were monitored estimate of the range and core area of bellbird pairs. for a total of 140 h over the course of the study. Nest localities were mapped to calculate the density of breeding pairs within the study area. Survivorship RESULTS of individuals, as well as maintenance of pair bonds Distribution into the following season, was monitored. The average range of a bellbird pair was 201m2 (SET = 28, n = 9) centred on the nest. Exclusiveness Breeding of the core area, and size, varied between pairs Bellbird breeding activity was intensively (K = 139 m2, SET = 22, n = 9). During the breeding monitored in Oct-Jan for 2 seasons (1977 and 1978), season, both members of the pair were typically with additional observations made in the found within the core area throughout the day. The preceding 4 years. Information was obtained for 27 range of most pairs overlapped at flowering nests from 17 pairs. Nests were found by observing resources temporarily in demand by other paired birds for signs of breeding activity. These bellbirds. At times when no substantial nectar included carrying nesting material or food, hurried source occurred within the core area, the male feeding and 'twittering' behaviour by the female, defended feeding access within these areas of and worn tail feathers, brood patches, and extrud- resource overlap.-important plant species during ed cloaca in brooding females. Recorded song was the breeding season were flowering flax, rewarewa also used to lure females, and the responding bird and pohutukawa. Kanuka, manuka, ti, mahoe, could then be followed back to a nest. Nests were hangehange, ngaio (Myoporum laetum), mapou described, and where possible monitored daily to (Myrsine australis), and the native jasmine assess building and laying activity. Clutch size and (Parsonsia heterophylla) provided alternative lower the hatching success of eggs were checked while reward nectar resources (Craig 1986; Anderson the parents were absent from the nest, using a 1997; Castro & Robertson 1997). ladder and nest mirror. Head, wing, and tarsus Observations of territorial pairs and nests measurements of the nestlings from a single nest revealed 8 breeding pairs within the 4 ha study were taken daily using vernier calipers to obtain area in Nov 1977 and 9 in Nov 1978 (mean a growth pattern. Nestlings were fitted with density 2.13 pairs ha-1). Numerous single birds also individual colour band combinations before fledg- regularly used or resided in the same area, ing. Fledglings were monitored to independence, resulting in a higher density of individual birds. and the fate of juveniles recorded where possible. Tui held breeding territories in the study area at a similar density and competed for the same nectar Reproductive success resources (Stewart 1980). Dominance over the core To allow some comparison with the Poor Knights area decreased after fledglings were independent population, survival was calculated in the same and nesting had ceased. Although each pair manner as Sagar (1985). To obtain a true measure remained largely site-attached throughout the of nest success, while accounting for bias because year, they spent varying amounts of time away of incomplete breeding records, Stanley's (2000) ' from the core area depending on food availability. method was used to estimate stage-specific daily All but one of the 16 paired adults on Tiritiri survival probabilities, and to calculate a point Matangi in 1977 were banded, and of these 11 were Bellbird breeding on Tiritiri Matangi 77 resighted the following year. Although the fate of the unbanded bird could not be certain, it was not observed with its banded mate the following year and so was presumed dead. Three of the 8 pairs remained intact and defended the same area in 1978, 1 was not observed again and the defended area taken over by neighbours, and 3 lost 1 bird of the pair. A single pair separated, each to take a new mate and become neighbouring pairs.
Recommended publications
  • New Zealand Comprehensive II Trip Report 31St October to 16Th November 2016 (17 Days)
    New Zealand Comprehensive II Trip Report 31st October to 16th November 2016 (17 days) The Critically Endangered South Island Takahe by Erik Forsyth Trip report compiled by Tour Leader: Erik Forsyth RBL New Zealand – Comprehensive II Trip Report 2016 2 Tour Summary New Zealand is a must for the serious seabird enthusiast. Not only will you see a variety of albatross, petrels and shearwaters, there are multiple- chances of getting out on the high seas and finding something unusual. Seabirds dominate this tour and views of most birds are alongside the boat. There are also several land birds which are unique to these islands: kiwis - terrestrial nocturnal inhabitants, the huge swamp hen-like Takahe - prehistoric in its looks and movements, and wattlebirds, the saddlebacks and Kokako - poor flyers with short wings Salvin’s Albatross by Erik Forsyth which bound along the branches and on the ground. On this tour we had so many highlights, including close encounters with North Island, South Island and Little Spotted Kiwi, Wandering, Northern and Southern Royal, Black-browed, Shy, Salvin’s and Chatham Albatrosses, Mottled and Black Petrels, Buller’s and Hutton’s Shearwater and South Island Takahe, North Island Kokako, the tiny Rifleman and the very cute New Zealand (South Island wren) Rockwren. With a few members of the group already at the hotel (the afternoon before the tour started), we jumped into our van and drove to the nearby Puketutu Island. Here we had a good introduction to New Zealand birding. Arriving at a bay, the canals were teeming with Black Swans, Australasian Shovelers, Mallard and several White-faced Herons.
    [Show full text]
  • THE ECOLOGICAL REQUIREMENTS of the NEW ZEALAND FALCON (Falco Novaeseelandiae) in PLANTATION FORESTRY
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE ECOLOGICAL REQUIREMENTS OF THE NEW ZEALAND FALCON (Falco novaeseelandiae) IN PLANTATION FORESTRY A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology at Massey University, Palmerston North, New Zealand Richard Seaton 2007 Adult female New Zealand falcon. D. Stewart 2003. “The hawks, eagles and falcons have been an inspiration to people of all races and creeds since the dawn of civilisation. We cannot afford to lose any species of the birds of prey without an effort commensurate with the inspiration of courage, integrity and nobility that they have given humanity…If we fail on this point, we fail in the basic philosophy of feeling a part of our universe and all that goes with it.” Morley Nelson, 2002. iii iv ABSTRACT Commercial pine plantations made up of exotic tree species are increasingly recognised as habitats that can contribute significantly to the conservation of indigenous biodiversity in New Zealand. Encouraging this biodiversity by employing sympathetic forestry management techniques not only offers benefits for indigenous flora and fauna but can also be economically advantageous for the forestry industry. The New Zealand falcon (Falco novaeseelandiae) or Karearea, is a threatened species, endemic to the islands of New Zealand, that has recently been discovered breeding in pine plantations. This research determines the ecological requirements of New Zealand falcons in this habitat, enabling recommendations for sympathetic forestry management to be made.
    [Show full text]
  • State and Trends in the Diversity, Abundance and Distribution of Birds in Upper Hutt City
    State and trends in the diversity, abundance and distribution of birds in Upper Hutt City May 2018 1 State and trends in the diversity, abundance and distribution of birds in Upper Hutt City. Nikki McArthur1, Jonathan Walter2 and Samantha Ray1 1Wildlife Management International Ltd 2C/- Greater Wellington Regional Council PO Box 607 Shed 39 Blenheim 7240 2 Fryatt Quay New Zealand Pipitea www.wmil.co.nz Wellington 6011 This report was prepared by Wildlife Management International Limited for Greater Wellington Regional Council in fulfilment of the Contract for Services dated 20th October 2017. 30th May 2018 Citation: This report should be cited as: McArthur, N.; Walter, J. and Ray, S. 2018. State and trends in the diversity, abundance and distribution of birds in Upper Hutt City. Client report prepared for Greater Wellington Regional Council. Wildlife Management International Ltd, Blenheim. All photographs in this report are copyright © WMIL unless otherwise credited, in which case the person or organization credited is the copyright holder. Cover Image: Whitehead (Mohoua albicilla). Photo credit: Jared Le Roy/New Zealand Birds Online (http://nzbirdsonline.org.nz/). EXECUTIVE SUMMARY Five-minute bird counts have been carried out at 45 bird count stations situated in native forest habitat in six selected Upper Hutt City parks and reserves each year between 2011 and 2017. The aim of these surveys is to monitor trends in the diversity, abundance and distribution of native forest birds in Upper Hutt City’s reserve network, to provide a measure of local biodiversity management outcomes. Between 26 and 37 bird species were detected during these bird counts each year, with approximately half of these species being native species and half being introduced and naturalised species.
    [Show full text]
  • New Zealand Comprehensive III 16Th November – 2Nd December 2017 Trip Report
    New Zealand Comprehensive III 16th November – 2nd December 2017 Trip Report Gibson’s Wandering Albatross off Kaikoura by Erik Forsyth Trip Report compiled by Tour Leader Erik Forsyth Rockjumper Birding Tours | New Zealand www.rockjumperbirding.com Trip Report – RBL New Zealand - Comprehensive III 2017 2 Daily Diary New Zealand is a must for the serious seabird enthusiast. Not only will you see a variety of albatrosses, petrels and shearwaters, but there are good chances of getting out on the high seas and finding something unusual. Seabirds dominate this tour, and views of most birds are right alongside the boat. There are also several land birds which are unique to these islands: the kiwis – terrestrial nocturnal inhabitants; the huge swamp-hen like takahe – prehistoric in its looks and movements; and then the wattlebirds (the saddlebacks and kokako) – poor flyers with short wings, which bound along the branches and on the ground. We had so many highlights on this tour, including close encounters with Little Spotted Kiwi, walk-away views of a pair of North Island Kokako, both North and South Island Saddlebacks and a pair of the impressive South Island Takahe. With many boat trips, the pelagic list was long, with Wandering, Northern and Southern Royal, Salvin’s, Black-browed, Campbell and White-capped Albatrosses, Westland, Cook’s and White- chinned Petrels, Buller’s, Flesh-footed and New Zealand (Red-breasted) Plover by Erik Forsyth Hutton’s Shearwaters, and Common Diving Petrel being a few of the highlights. Other major highlights included twelve New Zealand King Shag, a pair of Blue Duck with one chick, nine of the critically endangered Black Stilt, the rare Stitchbird, New Zealand Kaka, the entertaining Kea, range- restricted New Zealand Rockwren, the tiny Rifleman and lastly the striking Yellowhead, to name a few.
    [Show full text]
  • Best Practice Techniques for the Translocation of Whiteheads (Popokatea, Mohoua Albicilla)
    Best practice techniques for the translocation of whiteheads (popokatea, Mohoua albicilla) Ralph Powlesland and Kevin Parker Cover: Whitehead, Tiritiri Matangi Island. Photo: Martin Sanders. © Copyright April 2014, New Zealand Department of Conservation Published by the Terrestrial Ecosystems Unit, National Office, Science and Capability Group, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. Editing and design by the Publishing Team, National Office, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. CONTENTS Abstract 1 1. Introduction 2 2. Animal welfare requirements 3 3. Transfer team 3 4. Time of year for transfer 3 5. Number of transfers 4 6. Composition of transfer group 4 7. Sexing whiteheads 4 7.1 Appearance 4 7.2 Measurements 5 7.3 DNA sexing 6 8. Ageing whiteheads 7 9. Capture 7 10. Transfer to base for ‘processing’ 7 11. Processing the birds 8 12. Temporary housing in aviaries 10 12.1 Capture in the aviary on transfer day 12 13. Feeding 14 14. Whitehead husbandry 15 15. Transfer box design 15 16. Transport 16 17. Release 17 18. Post-release monitoring 17 18.1 Purpose 17 18.2 Recommended monitoring 19 19. Record keeping 19 20. References 21 Appendix 1 Details of report contributors 23 Appendix 2 Feeding protocol for whiteheads being held in temporary aviaries 24 Appendix 3 Recipes for whitehead foods 25 Best practice techniques for the translocation of whiteheads (popokatea, Mohoua albicilla) Ralph Powlesland1 and Kevin Parker2 1 606 Manaroa Road, Manaroa, RD 2, Picton, New Zealand [email protected] 2 Parker Conservation, Auckland, New Zealand parkerconservation.co.nz Abstract This document outlines best practice techniques for the translocation of whiteheads (popokatea, Mohoua albicilla).
    [Show full text]
  • The Distribution and Current Status of New Zealand Saddleback Philesturnus Carunculatus
    Bird Conservation International (2003) 13:79–95. BirdLife International 2003 DOI: 10.1017/S0959270903003083 Printed in the United Kingdom The distribution and current status of New Zealand Saddleback Philesturnus carunculatus SCOTT HOOSON and IAN G. JAMIESON Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand Summary This paper reviews and updates the distribution and status of two geographically distinct subspecies of New Zealand Saddleback Philesturnus carunculatus, a New Zealand forest passerine that is highly susceptible to predation by introduced mammals such as stoats and rats. The recovery of the North Island and South Island saddleback populations has been rapid since translocations to offshore islands free of exotic predators began in 1964, when both subspecies were on the brink of extinction. South Island saddlebacks have gone from a remnant population of 36 birds on one island to over 1,200 birds spread among 15 island populations, with the present capacity to increase to a maximum of 2,500 birds. We recommend that South Island saddleback be listed under the IUCN category of Near Threatened, although vigilance on islands for invading predators and their subsequent rapid eradication is still required. North Island saddlebacks have gone from a remnant population of 500 birds on one island to over 6,000 on 12 islands with the capacity to increase to over 19,000 individuals. We recommend that this subspecies be downgraded to the IUCN category of Least Concern. The factors that limited the early recovery of saddlebacks are now of less significance with recent advances in predator eradication techniques allowing translocations to large islands that were formerly unsuitable.
    [Show full text]
  • Re-Establishing North Island Kākā (Nestor Meridionalis Septentrionalis
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Re-establishing North Island kākā (Nestor meridionalis septentrionalis) in New Zealand A thesis presented in fulfilment of the requirements for the degree of Master of Science In Conservation Biology Massey University Auckland, New Zealand Tineke Joustra 2018 ii For Orlando, Aurora and Nayeli “I don’t want my children to follow in my footsteps, I want them to take the path next to me and go further than I could have ever dreamt possible” Anonymous iii iv Abstract Recently there has been a global increase in concern over the unprecedented loss of biodiversity and how the sixth mass extinction event is mainly due to human activities. Countries such as New Zealand have unique ecosystems which led to the evolution of many endemic species. One such New Zealand species is the kākā (Nestor meridionalis). Historically, kākā abundance has been affected by human activities (kākā were an important food source for Māori and Europeans). Today, introduced mammalian predators are one of the main threats to wild kākā populations. Although widespread and common throughout New Zealand until the 1800’s, kākā populations on the mainland now heavily rely on active conservation management. The main methods of kākā management include pest control and re-establishments. This thesis evaluated current and past commitments to New Zealand species restoration, as well as an analysis of global Psittacine re-establishment efforts.
    [Show full text]
  • Hihi – Stitchbird Facts As We Approach Christmas and the New Year We
    Hihi – Stitchbird facts As we approach Christmas and the New Year we also approach the first year anniversary of HANZ. Woo! To celebrate us lasting a year and not just my dad listening but actual real people too, I have decided to do what most podcasts do during this time and do an AMAA or Ask Me Almost Anything or a Q and A episode if you like. So, to do that, I need questions that you would like answered! They can be about pretty much anything you want, stuff about the podcast, how I make it, the research, what I wear while recording, I don’t know! But you can also ask anything about me, who I am, my biases and just generally get to know me better if you want! There are a few restrictions though, as you might expect. I won’t answer anything too personal or that might tell you more about where I live and work. All I will say on those fronts is that I live in Wellington and I work in conservation, so don’t bother asking anything deeper. Don’t worry too much about that though, I’ll filter questions that I deem out of scope, so fire away anything you want to know through to me via Twitter, Facebook, Email and all the usual places! I’ll probably need quite a few so really go nuts! Kia ora, gday and welcome to the History of Aotearoa New Zealand. Episode 26: My Birb of the Year. I know I said that we would be talking about Māui this time but he will have to wait for next time cause I decided to do something a bit different.
    [Show full text]
  • Stitchbird (Hihi), Notiomystis Cincta Recovery Plan
    Stitchbird (Hihi), Notiomystis cincta Recovery Plan Threatened Species Recovery plan Series No. 20 Department of Conservation Threatened Species Unit PO Box 10-420 Wellington New Zealand Prepared by: Gretchen Rasch,Shaarina Boyd and Suzanne Clegg for the Threatened Species Unit. April 1996 © Department of Conservation ISSN 1170-3806 ISBN 0-478-01709-6 Cover photo: C.R. Veitch, Department of Conservation CONTENTS page 1. Introduction 1 2. Distribution and Cause of Decline 3 2.1 Past distribution 3 2.2 Present distribution 3 2.3 Possible reasons for decline 3 3. Ecology 7 3.1 Foods and feeding 7 3.2 Competition with other honeyeaters 7 3.3 Habitat 8 4. Recovery to Date 9 4.1 Transferred populations 9 4.2 Captive population 11 5. Recovery Strategy 13 5.1 Long term goal 13 5.2 Short term objectives 13 6. Work Plan 15 6.1 Protect all islands with stitchbirds 15 6.2 Monitor stitchbirds on Little Barrier island 15 6.3 Monitor and (where necessary) enhance stitchbird populations on existing transfer sites 16 6.4 Establish self-sustaining populations of stitchbirds in other locations 18 6.5 Support captive breeding programme 18 6.6 Advocacy 19 6.7 Research needs 20 References 23 Appendices 1. Stitchbird Ecology 2. Criteria for assessing suitability of sites for stitchbird transfer. FIGURES page 1. Present distribution of stitchbird (Notiomystis cincta) 4 2. Average number of stitchbirds counted per transect on Little Barrier Island 1975-1989 5 3. Percentage of food types in stitchbird diet, Little Barrier Island 1982-1984 7 Percentage of foods used by honeyeaters on Little Barrier 1982-1983 Appendix 1, p 1 Nectar used by honeyeaters in the Tirikakawa Valley, Little Barrier 1983-1984 Appendix 1, p2 TABLES page 1.
    [Show full text]
  • Temporal Changes in Birds and Bird Song Detected in Zealandia Sanctuary, Wellington, New Zealand, Over 2011-2015
    173 Notornis, 2015, Vol. 62: 173-183 0029-4470 © The Ornithological Society of New Zealand Inc. Temporal changes in birds and bird song detected in Zealandia sanctuary, Wellington, New Zealand, over 2011-2015 BEN D. BELL Centre for Biodiversity & Restoration Ecology, Victoria University of Wellington, New Zealand Abstract Bird counts were carried out in Zealandia sanctuary, Wellington, New Zealand, along a 6.3 km slow-walk transect, every 3 weeks for 4 years (2011-2015). The mean ± se number of species detected per count was 30.0 ± 0.4 (range 22-37) and the mean ± se total of individuals detected per count was 572.7 ± 12.8 birds (range 361-809). Of 43 species detected, 15 occurred on every count, 8 on most, 13 less frequently and 7 only occasionally. Forest birds were mostly first detected by sound, but water or wetland birds mostly by sight. For 35 species with sufficient data to model, significant seasonal changes occurred in 9 species (26%) and significant annual changes in 4 species (11%), with the total of birds counted peaking in late summer/autumn. Song output varied amongst passerines, with large seasonal effects in 6 European introduced species, but lower seasonal effects in 9 native species. Bell, B.D. 2015. Temporal changes in birds and bird song detected in Zealandia sanctuary, Wellington, New Zealand, over 2011-2015. Notornis 62 (4): 173-183. Keywords transect-counts; conspicuousness; seasonality; introductions; bird song INTRODUCTION the interplay between the birds’ conspicuousness Relatively recent initiation of mainland island and their actual numbers (Gibb 1996; Sullivan sites constitutes an important step in ecosystem- 2012).
    [Show full text]
  • New Zealand North Island Endemics 16Th November to 24Th November 2021 (9 Days) South Island Endemics 24Th November to 3Rd December 2021 (10 Days)
    New Zealand North Island Endemics 16th November to 24th November 2021 (9 days) South Island Endemics 24th November to 3rd December 2021 (10 days) Whitehead by Adam Riley New Zealand supports a host of unusual endemic land birds and a rich assemblage of marine birds and mammals. Our North Island tour is designed to seek almost every possible endemic and take full RBL New Zealand – South Island Endemics & Extension Itinerary 2 advantage of fabulous scenery. Beginning in Auckland, we target North Island Brown Kiwi, Whitehead and North Island Saddleback as well as a visit to the fabled Tiritiri Matangi Island where we will bird this predator-free reserve for the prehistoric South Island Takahe, strange North Island Kokako and Stitchbird, before combing the Miranda shoreline for the bizarre Wrybill and numerous waders. A pelagic excursion then takes place in the Hauraki Gulf in search of the Black and Cook’s Petrel, Buller’s Flesh-footed and Fluttering Shearwater. From here we visit the scenic Tongariro National Park in the centre of the North Island where we check fast-flowing streams for the rare Blue Duck while nearby forests hold Rifleman and Tomtit. We finish our time on the North Island visiting the famous Zealandia Reserve searching for the endangered Little Spotted Kiwi, New Zealand Falcon, Red-crowned Parakeet, New Zealand Kaka and Stitchbird We start our South Island tour in the beautiful grasslands of the Mackenzie region of the South Island where we will take in the beauty of the Southern Alpine rang, while looking for the critically endangered Black Stilt, before hiking through pristine Red Beech forest surrounded by breath-taking glacier-lined mountains, where the massive Kea (an Alpine parrot) can be found.
    [Show full text]
  • The Responses of New Zealand's Arboreal Forest Birds to Invasive
    The responses of New Zealand’s arboreal forest birds to invasive mammal control Nyree Fea A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington Te Whare Wānanga o te Ūpoko o te Ika a Māui 2018 ii This thesis was conducted under the supervision of Dr. Stephen Hartley (primary supervisor) School of Biological Sciences Victoria University of Wellington Wellington, New Zealand and Associate Professor Wayne Linklater (secondary supervisor) School of Biological Sciences Victoria University of Wellington Wellington, New Zealand iii iv Abstract Introduced mammalian predators are responsible for over half of contemporary extinctions and declines of birds. Endemic bird species on islands are particularly vulnerable to invasions of mammalian predators. The native bird species that remain in New Zealand forests continue to be threatened by predation from invasive mammals, with brushtail possums (Trichosurus vulpecula) ship rats (Rattus rattus) and stoats (Mustela erminea) identified as the primary agents responsible for their ongoing decline. Extensive efforts to suppress these pests across New Zealand’s forests have created “management experiments” with potential to provide insights into the ecological forces structuring forest bird communities. To understand the effects of invasive mammals on birds, I studied responses of New Zealand bird species at different temporal and spatial scales to different intensities of control and residual densities of mammals. In my first empirical chapter (Chapter 2), I present two meta-analyses of bird responses to invasive mammal control. I collate data from biodiversity projects across New Zealand where long-term monitoring of arboreal bird species was undertaken.
    [Show full text]