REVIEW Singularity Theorems and Their Consequences

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW Singularity Theorems and Their Consequences General Relativity and Gravitation, Vol. 29,30, No.No. 5,5, 1997 1998 REVIEW Singularity Theorems and Their Consequences Jos Âe M. M. Senov illa1 Received September 24, 1997. Rev. version February 26, 1998 A detailed study of the singularity theorems is presented. I discuss the plausibility and reasonability of their hypotheses, the applicability and implications of the theorems, as well as the theorems themselves. The consequences usually extracted from them, some of them without the necessary rigour, are widely and carefully analysed with many clarifying examples and alternative views. 1. INTRODUCTION It is now more than 30 years since the appearance of the Penrose singularity theorem [162], and more than 40 years since the fundamental Raychaud- huri equation and results were published [170]. Much work based on these important ideas was later developed and has become one of the main parts of classical general relativity: singularity theorems and related problems. It has even crossed the standard limits of general relativity and become a ® eld of interest both for other branches of physics or mathematics and for the general public. This is due to its possible consequences concerning gravitational collapse, astrophysics and cosmology, which are very popular nowadays. The singularity theorems can be termed as one of the greatest achievements within relativity, but they contain some mathematical and 1 Departament de FÂõ sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain. E-mail: seno@hermes.Œn.ub.es 7 0 1 0001-7701/ 97/ 0500-0701$12.50/ 0 1997 P lenum P ublishing Corporation 7 0 2 S e n ov illa physical subtleties which cause them to be, on some occasions, wrongly in- terpreted or not well-understood. The main conclusions of the singularity theorems are usually interpreted as providing evidence of the (classical) singular beginning of the Universe and of the singular ® nal fate of some stars. To what extent this is truly so will be analysed here. In fact, the singularity theorems do not exactly lead to such conclu- sions, but given that singularity theory in general relativity is a di cult matter, there has always been a wish to simplify the `exact wording’ of the theorems Ð while keeping the essentials by pinpointing the important clues Ð such that their assumptions and conclusions could be easily un- derstood and applied to some simple situations. Unfortunat ely, all these simplifying attempts have not succeeded, even though sometimes they were devised very cleverly. I have the feeling that any other simplifying attempt yet to come is also doomed to failure, given that many explicit examples show that exact rigour Ð both in the assumptions and the conclusions Ð is absolut ely necessary. Many such examples will be presented in this paper. The lesson is that one has to rely on the true actual theorems, and this is sometimes unpleasant as they need a rather good knowledge of the standard global and causality techniques in general relativity. One of the purposes of this paper is to collect all that is needed for the singu- larity theorems in a manner as easy and simple as possible. Everything will be treated within classical relativity; semi-classical theories, quan- tum phenomena or quant um gravity will not be taken into account, as they essentially change the physics behind the singularity theorems and thereby drastically modify their conclusions. Alternative classical gravi- tation theories will not be considered either, although many results are easily recovered there (see the complete review, Ref. 84). The main questions to be treated here are: what do the singularity theorems say, and what do they not say? And, what are their actual consequences? To that end, on the one hand the paper is completely self- contained, and on the other hand it has many explicit examples illustrating the subtleties and problems behind most concepts and results. Concerning the ® rst point, only standard basic general relativity is needed to be able to read the whole paper. The global causality theory, the concepts of maximal curves and its existence, the focusing of geodesics, and all that is basic for the singularity theorems, are fully developed step-by-step in Section 2. Of course, there are excellent references for these mathematical developments, such as [107,165]; besides, there exist very good and complete reviews, for instance [220]. Nevertheless, and even though Section 2 is essentially standard as there are no new results, I have tried to keep the level as simple as possible compatible with absolute rigour, and many of the proofs have Singularity Theorems and Their Consequences 7 0 3 been modi® ed Ð and sometimes given in further detail Ð with respect to the standard references. People interested in these global techniques who nonetheless are not experts on them may ® nd this section of some help, for most of the developm ents are carefully proved while keeping always the maximum simplicity. Moreover, the basic traditional structure has been partially reorganized so that every single result appears at its natural place, and some of the fundamental steps have been split into simpler smaller ones, making the way to the singularity theorems more practicable. However, readers familiar with the global techniques may ® nd it more useful to skip Section 2 and go directly to Section 3. The rest of the sections, with the exception of Section 5 which is de- voted to the full proof of the theorems themselves, contain many original explicit and simple examples, together with a deep analysis of the concepts involved, showing how some intuitive or naive conclusions concerning sin- gularity theorems may be false. The emphasis is placed on the alternative views with regard to what can be considered the standard opinion, and specially on the doors left open by the theorems in order to construct re- alistic and reasonable singularity -free spacetimes. Section 3 is devoted to the study, de® nition, classi® cation and properties of singularities. Several explicit examples are shown, and the problem of choosing extensions of given incomplete spacetimes, and how to construct them, will be exam- ined. The concept of a singular extension is introduced and shown to be both necessary in some situations and a non-orthodox alternative possi- bility in some other cases. A de® nition of big-bang singularity, together with the unusual propert ies they may have, is also provided. In Section 4 the fundamental concepts of trapped sets and closed trapped surfaces are introduced. This is mainly standard but some explicit examples are given. The consequences of their existence relevant to the singularity theorems are explicit ly proved here. Again, Sections 4 and 5 may be skipped by connoisseurs. The last two sections are completely original and may be controver- sial. Section 6 is devoted to a thorough analysis of the assumptions and conclusions of the theorems. A skeleton pattern-theorem for the singu- larity theorems is shown, and the intuitive ideas behind their proofs are explicit ly described. A full detailed outspoken criticism of the singularity theorems is presented, considering each of its parts on its own, and ending with a summary of what I think their main unsolved weaknesses are. Most of this criticism is supported by many explicit and illustrative examples given in the last Section 7, with a total of nine diŒerent subsections. All the examples are simple and clear, and each of them sheds light on a particular part, or on a particular widespread Ð but incorrect Ð belief concerning 7 0 4 S e n ov illa the theorems; in other cases, the examples show which particular things are taken for granted, sometimes incorrect ly. A tentative de® nition of a classical cosmological model is put forward, and many non-singular space- times are explicit ly given. Sometimes, the existence of such examples has been considered surprising, but that is precisely the purpose: they show that many doors for constructing regular realistic spacetimes are still open. They also allow us to control the degrees of necessity of the theorem as- sumptions, proving manifest ly that they cannot be relaxed and that they may be more demanding than is usually thought . Before entering intothe main subject, let us brie¯ y review the notation to be used in this paper. The closure, interior and boundary of a set f are denoted by f, int f and ¶ f, respectively. The proper and normal inclusions are denoted by Ì and Í , as usual. Einstein’ s equations are written as 1 Rm u ± 2 gm u R = Tm u , where Tm u is the energy-momentum tensor, R m u is the Ricci tensor and R is the scalar curvature. The geometrized units 8pG = c = 1 are used throughout the paper. An equality by de® nition is denoted by º , while the end (or the absence) of a proof is signaled by . Greek indices run from 0 to 3, small latin indices from 1 to 3 and capital latin indices take the a values 2 and 3. The sign of the Riemann tensor Rb lm is de® ned by eq. (26). Boldface letters and arrowed symbols indicate one-forms and vectors, re- spectively, and the exterior diŒerential is denoted by d. Square or round brackets enclosing some indices denote the usual (anti-)symmetrization. The metric tensor ® eld is denoted by g, and the line-element in any local coordinat e chart xm is the quantity f g 2 m u ds = gm u dx dx . 2. BASIC RESULTS IN GENERAL RELATIVITY AND CAUSALITY The basic arena in General Relativity is the spacetim e .A C k space- time (V4 , g) is a paracompact, connected, oriented, HausdorŒ, 4-dimen- k sional diŒerentiable manifold V4 endowed with a C (k ³ 2 ± ) Lorentzian metric g (signature ± , + , + , + ) [12,65,107,187,2 39].
Recommended publications
  • The Geometry of Resonance Tongues: a Singularity Theory Approach
    INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY Nonlinearity 16 (2003) 1511–1538 PII: S0951-7715(03)55769-3 The geometry of resonance tongues: a singularity theory approach Henk W Broer1, Martin Golubitsky2 and Gert Vegter3 1 Department of Mathematics, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands 2 Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA 3 Department of Computing Science, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands Received 7 November 2002, in final form 20 May 2003 Published 6 June 2003 Online at stacks.iop.org/Non/16/1511 Recommended by A Chenciner Abstract Resonance tongues and their boundaries are studied for nondegenerate and (certain) degenerate Hopf bifurcations of maps using singularity theory methods of equivariant contact equivalence and universal unfoldings. We recover the standard theory of tongues (the nondegenerate case) in a straightforward way and we find certain surprises in the tongue boundary structure when degeneracies are present. For example, the tongue boundaries at degenerate singularities in weak resonance are much blunter than expected from the nondegenerate theory. Also at a semi-global level we find ‘pockets’ or ‘flames’ that can be understood in terms of the swallowtail catastrophe. Mathematics Subject Classification: 37G15, 37G40, 34C25 1. Introduction This paper focuses on resonance tongues obtained by Hopf bifurcation from a fixed point of a map. More precisely, Hopf bifurcations of maps occur at parameter values where the Jacobian of the map has a critical eigenvalue that is a root of unity e2πpi/q , where p and q are coprime integers with q 3 and |p| <q.Resonance tongues themselves are regions in parameter space near the point of Hopf bifurcation where periodic points of period q exist and tongue boundaries consist of critical points in parameter space where the q-periodic points disappear, typically in a saddle-node bifurcation.
    [Show full text]
  • The Witten Equation, Mirror Symmetry, and Quantum Singularity Theory
    Annals of Mathematics 178 (2013), 1{106 http://dx.doi.org/10.4007/annals.2013.178.1.1 The Witten equation, mirror symmetry, and quantum singularity theory By Huijun Fan, Tyler Jarvis, and Yongbin Ruan Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a corresponding cohomological field theory associated to the singularity. This theory is analogous to Gromov-Witten theory and generalizes the theory of r-spin curves, which corresponds to the simple singularity Ar−1. We also resolve two outstanding conjectures of Witten. The first con- jecture is that ADE-singularities are self-dual, and the second conjecture is that the total potential functions of ADE-singularities satisfy correspond- ing ADE-integrable hierarchies. Other cases of integrable hierarchies are also discussed. Contents 1. Introduction2 1.1. Organization of the paper9 1.2. Acknowledgments9 2. W -curves and their moduli 10 2.1. W -structures on orbicurves 10 2.2. Moduli of stable W -orbicurves 20 2.3. Admissible groups G and W g;k;G 30 2.4. The tautological ring of W g;k 32 3. The state space associated to a singularity 35 3.1. Lefschetz thimble 35 3.2. Orbifolding and state space 37 H. F. was partially Supported by NSFC 10401001, NSFC 10321001, and NSFC 10631050. T. J. was partially supported by National Science Foundation grants DMS-0605155 and DMS-0105788 and the Institut Mittag-Leffler (Djursholm, Sweden). Y. R. was partially supported by the National Science Foundation and the Yangtze Center of Mathematics at Sichuan University.
    [Show full text]
  • Vanishing Cycles, Plane Curve Singularities, and Framed Mapping Class Groups
    VANISHING CYCLES, PLANE CURVE SINGULARITIES, AND FRAMED MAPPING CLASS GROUPS PABLO PORTILLA CUADRADO AND NICK SALTER Abstract. Let f be an isolated plane curve singularity with Milnor fiber of genus at least 5. For all such f, we give (a) an intrinsic description of the geometric monodromy group that does not invoke the notion of the versal deformation space, and (b) an easy criterion to decide if a given simple closed curve in the Milnor fiber is a vanishing cycle or not. With the lone exception of singularities of type An and Dn, we find that both are determined completely by a canonical framing of the Milnor fiber induced by the Hamiltonian vector field associated to f. As a corollary we answer a question of Sullivan concerning the injectivity of monodromy groups for all singularities having Milnor fiber of genus at least 7. 1. Introduction Let f : C2 ! C denote an isolated plane curve singularity and Σ(f) the Milnor fiber over some point. A basic principle in singularity theory is to study f by way of its versal deformation space ∼ µ Vf = C , the parameter space of all deformations of f up to topological equivalence (see Section 2.2). From this point of view, two of the most basic invariants of f are the set of vanishing cycles and the geometric monodromy group. A simple closed curve c ⊂ Σ(f) is a vanishing cycle if there is some deformation fe of f with fe−1(0) a nodal curve such that c is contracted to a point when transported to −1 fe (0).
    [Show full text]
  • Singularities Bifurcations and Catastrophes
    Singularities Bifurcations and Catastrophes James Montaldi University of Manchester ©James Montaldi, 2020 © James Montaldi, 2020 Contents Preface xi 1 What’sitallabout? 1 1.1 The fold or saddle-nodebifurcation 2 1.2 Bifurcationsof contours 4 1.3 Zeeman catastrophemachine 5 1.4 Theevolute 6 1.5 Pitchfork bifurcation 11 1.6 Conclusions 13 Problems 14 I Catastrophe theory 17 2 Familiesof functions 19 2.1 Criticalpoints 19 2.2 Degeneracyin onevariable 22 2.3 Familiesoffunctions 23 2.4 Cuspcatastrophe 26 2.5 Why‘catastrophes’ 29 Problems 30 3 The ring of germs of smooth functions 33 3.1 Germs: making everythinglocal 33 3.2 Theringofgerms 35 3.3 Newtondiagram 39 3.4 Nakayama’s lemma 41 3.5 Idealsof finite codimension 43 3.6 Geometric criterion for finite codimension 45 Problems 45 4 Rightequivalence 49 4.1 Rightequivalence 49 4.2 Jacobianideal 51 4.3 Codimension 52 4.4 Nondegeneratecritical points 52 4.5 SplittingLemma 55 Problems 59 vi Contents 5 Finitedeterminacy 63 5.1 Trivial familiesofgerms 64 5.2 Finitedeterminacy 67 5.3 Apartialconverse 70 5.4 Arefinementofthefinitedeterminacytheorem 71 5.5 Thehomotopymethod 72 5.6 Proof of finite determinacy theorems 74 5.7 Geometriccriterion 77 Problems 78 6 Classificationoftheelementarycatastrophes 81 6.1 Classification of corank 1 singularities 82 6.2 Classification of corank 2 critical points 84 6.3 Thom’s 7 elementarysingularities 86 6.4 Furtherclassification 87 Problems 89 7 Unfoldingsand catastrophes 91 7.1 Geometry of families of functions 92 7.2 Changeofparameterandinducedunfoldings 94 7.3 Equivalenceof
    [Show full text]
  • Arxiv:Math/0507171V1 [Math.AG] 8 Jul 2005 Monodromy
    Monodromy Wolfgang Ebeling Dedicated to Gert-Martin Greuel on the occasion of his 60th birthday. Abstract Let (X,x) be an isolated complete intersection singularity and let f : (X,x) → (C, 0) be the germ of an analytic function with an isolated singularity at x. An important topological invariant in this situation is the Picard-Lefschetz monodromy operator associated to f. We give a survey on what is known about this operator. In particular, we re- view methods of computation of the monodromy and its eigenvalues (zeta function), results on the Jordan normal form of it, definition and properties of the spectrum, and the relation between the monodromy and the topology of the singularity. Introduction The word ’monodromy’ comes from the greek word µoνo − δρoµψ and means something like ’uniformly running’ or ’uniquely running’. According to [99, 3.4.4], it was first used by B. Riemann [135]. It arose in keeping track of the solutions of the hypergeometric differential equation going once around arXiv:math/0507171v1 [math.AG] 8 Jul 2005 a singular point on a closed path (cf. [30]). The group of linear substitutions which the solutions are subject to after this process is called the monodromy group. Since then, monodromy groups have played a substantial rˆole in many areas of mathematics. As is indicated on the webside ’www.monodromy.com’ of N. M. Katz, there are several incarnations, classical and l-adic, local and global, arithmetic and geometric. Here we concentrate on the classical lo- cal geometric monodromy in singularity theory. More precisely we focus on the monodromy operator of an isolated hypersurface or complete intersection singularity.
    [Show full text]
  • From Singularities to Graphs
    FROM SINGULARITIES TO GRAPHS PATRICK POPESCU-PAMPU Abstract. In this paper I analyze the problems which led to the introduction of graphs as tools for studying surface singularities. I explain how such graphs were initially only described using words, but that several questions made it necessary to draw them, leading to the elaboration of a special calculus with graphs. This is a non-technical paper intended to be readable both by mathematicians and philosophers or historians of mathematics. Contents 1. Introduction 1 2. What is the meaning of those graphs?3 3. What does it mean to resolve a surface singularity?4 4. Representations of surface singularities around 19008 5. Du Val's singularities, Coxeter's diagrams and the birth of dual graphs 10 6. Mumford's paper on the links of surface singularities 14 7. Waldhausen's graph manifolds and Neumann's calculus on graphs 17 8. Conclusion 19 References 20 1. Introduction Nowadays, graphs are common tools in singularity theory. They mainly serve to represent morpholog- ical aspects of surface singularities. Three examples of such graphs may be seen in Figures1,2,3. They are extracted from the papers [57], [61] and [14], respectively. Comparing those figures we see that the vertices are diversely depicted by small stars or by little circles, which are either full or empty. These drawing conventions are not important. What matters is that all vertices are decorated with numbers. We will explain their meaning later. My aim in this paper is to understand which kinds of problems forced mathematicians to associate graphs to surface singularities.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Life and Work of Egbert Brieskorn (1936-2013)
    Life and work of Egbert Brieskorn (1936 – 2013)1 Gert-Martin Greuel, Walter Purkert Brieskorn 2007 Egbert Brieskorn died on July 11, 2013, a few days after his 77th birthday. He was an impressive personality who left a lasting impression on anyone who knew him, be it in or out of mathematics. Brieskorn was a great mathematician, but his interests, knowledge, and activities went far beyond mathematics. In the following article, which is strongly influenced by the authors’ many years of personal ties with Brieskorn, we try to give a deeper insight into the life and work of Brieskorn. In doing so, we highlight both his personal commitment to peace and the environment as well as his long–standing exploration of the life and work of Felix Hausdorff and the publication of Hausdorff ’s Collected Works. The focus of the article, however, is on the presentation of his remarkable and influential mathematical work. The first author (GMG) has spent significant parts of his scientific career as a arXiv:1711.09600v1 [math.AG] 27 Nov 2017 graduate and doctoral student with Brieskorn in Göttingen and later as his assistant in Bonn. He describes in the first two parts, partly from the memory of personal cooperation, aspects of Brieskorn’s life and of his political and social commitment. In addition, in the section on Brieskorn’s mathematical work, he explains in detail 1Translation of the German article ”Leben und Werk von Egbert Brieskorn (1936 – 2013)”, Jahresber. Dtsch. Math.–Ver. 118, No. 3, 143-178 (2016). 1 the main scientific results of his publications.
    [Show full text]
  • View This Volume's Front and Back Matter
    Functions of Several Complex Variables and Their Singularities Functions of Several Complex Variables and Their Singularities Wolfgang Ebeling Translated by Philip G. Spain Graduate Studies in Mathematics Volume 83 .•S%'3SL"?|| American Mathematical Society s^s^^v Providence, Rhode Island Editorial Board David Cox (Chair) Walter Craig N. V. Ivanov Steven G. Krantz Originally published in the German language by Friedr. Vieweg & Sohn Verlag, D-65189 Wiesbaden, Germany, as "Wolfgang Ebeling: Funktionentheorie, Differentialtopologie und Singularitaten. 1. Auflage (1st edition)". © Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 2001 Translated by Philip G. Spain 2000 Mathematics Subject Classification. Primary 32-01; Secondary 32S10, 32S55, 58K40, 58K60. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-83 Library of Congress Cataloging-in-Publication Data Ebeling, Wolfgang. [Funktionentheorie, differentialtopologie und singularitaten. English] Functions of several complex variables and their singularities / Wolfgang Ebeling ; translated by Philip Spain. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 83) Includes bibliographical references and index. ISBN 0-8218-3319-7 (alk. paper) 1. Functions of several complex variables. 2. Singularities (Mathematics) I. Title. QA331.E27 2007 515/.94—dc22 2007060745 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Critical Values of Singularities at Infinity of Complex Polynomials
    Vietnam Journal of Mathematics 36:1(2008) 1–38 Vietnam Journal of MATHEMATICS © VAST 2008 Survey Critical Values of Singularities at Infinity of Complex Polynomials 1 2 Ha Huy Vui and Pham Tien Son 1Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam 2 Department of Mathematics, University of Dalat, 1 Phu Dong Thien Vuong, Dalat, Vietnam In memory of Professor Nguyen Huu Duc Received October 05, 2007 Revised March 12, 2008 Abstract. This paper is an overview of the theory of critical values at infinity of complex polynomials. 2000 Mathematics Subject Classification: 32S50, 32A20, 32S50. Keywords: Bifurcation set of complex polynomials; complex affine plane curve; Euler- Poincar´e characteristic; link at infinity; Lojasiewicz numbers; Milnor number; resolu- tion, singularities at infinity; splice diagram. 1. Introduction The study of topology of algebraic and analytic varieties is a very old and fun- damental subject. There are three fibrations which appear in this topic: (1) Lefschetz pencil, which provides essential tools for treating the topology of pro- jective algebraic varieties (see [75]); (2) Milnor fibration, which is a quite powerful instrument in the investigation the local behavior of complex analytic varieties —————————— 1The first author was supported in part by the National Basic Research Program in Natural Sciences, Vietnam. 2The second author was supported by the B2006-19-42. 2 Ha Huy Vui and Pham Tien Son in a neighborhood of a singular point (see [77]); and recently, (3) global Milnor fibration, which is used to study topology of affine algebraic varieties (see, for instance, [4, 10, 14, 17, 25, 40–44, 78–80, 85, 96, 109]).
    [Show full text]
  • Title Topology of Manifolds and Global Theory of Singularities
    Topology of manifolds and global theory of singularities Title (Theory of singularities of smooth mappings and around it) Author(s) Saeki, Osamu Citation 数理解析研究所講究録別冊 (2016), B55: 185-203 Issue Date 2016-04 URL http://hdl.handle.net/2433/241312 © 2016 by the Research Institute for Mathematical Sciences, Right Kyoto University. All rights reserved. Type Departmental Bulletin Paper Textversion publisher Kyoto University RIMS Kôkyûroku Bessatsu B55 (2016), 185−203 Topology of manifolds and global theory of singularities By Osamu SAeKI* Abstract This is a survey article on topological aspects of the global theory of singularities of differentiable maps between manifolds and its applications. The central focus will be on the notion of the Stein factorization, which is the space of connected components of fibers of a given map. We will give some examples where the Stein factorization plays essential roles in proving important results. Some related open problems will also be presented. §1. Introduction This is a survey article on the global theory of singularities of differentiable maps between manifolds and its applications, which is based on the authors talk in the RIMS Workshop (Theory of singularities of smooth mappings and around it, held in November 2013. Special emphasis is put on the Stein factorization, which is the space of connected components of fibers of a given map between manifolds. We will see that it often gives rise to a good manifold which bounds the original source manifold, and that it is a source of various interesting topological invariants of manifolds. We start with the study of a class of smooth maps that have the mildest singular‐ ities, i.e.
    [Show full text]
  • Differential Geometry from a Singularity Theory Viewpoint
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Matemática - ICMC/SMA Livros e Capítulos de Livros - ICMC/SMA 2015-12 Differential geometry from a singularity theory viewpoint IZUMIYA, Shyuichi et al. Differential geometry from a singularity theory viewpoint. Hackensack: World Scientific, 2015. 384 p. http://www.producao.usp.br/handle/BDPI/50103 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com 9108_9789814590440_tp.indd 1 22/9/15 9:14 am May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws This page intentionally left blank by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com 9108_9789814590440_tp.indd 2 22/9/15 9:14 am Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Differential geometry from a singularity theory viewpoint / by Shyuichi Izumiya (Hokkaido University, Japan) [and three others].
    [Show full text]