New Initialization Strategy for Nonnegative Matrix Factorization

Total Page:16

File Type:pdf, Size:1020Kb

New Initialization Strategy for Nonnegative Matrix Factorization NEW INITIALIZATION STRATEGY FOR NONNEGATIVE MATRIX FACTORIZATION A Thesis Presented By Yueyang Wang to The Department of Electrical and Computer Engineering In partial fulfillment of requirements for the degree of Master of Science in the field of Electrical & Computer Engineering Northeastern University Boston, Massachusetts May 2018 ii ABSTRACT Nonnegative matrix factorization (NMF) has been proved to be a powerful data representation method, and has shown success in applications such as data representation and document clustering. In this thesis, we propose a new initialization strategy for NMF. This new method is entitled square nonnegative matrix factorization, SQR-NMF. In this method, we first transform the non-square nonnegative matrix to a square one. Several strategies are proposed to achieve SQR step. Then we take the positive section of eigenvalues and eigenvectors for initialization. Simulation results show that SQR-NMF has faster convergence rate and provides an approximation with lower error rate as compared to SVD-NMF and random initialization methods. Complementing different elements in data matrix also affect the results. The experiments show that complementary elements should be 0 for small data sets and mean values of each row or column of the original nonnegative matrix for large data sets. Key words: Nonnegative matrix factorization, complementary elements iii ACKNOWLEDGEMENT I would like to express my sincere gratitude to my thesis advisor, Professor Shafai for his patience, motivation, and immense knowledge. His guidance helped me a lot in all the time of research and writing of the thesis. I could not have imagined having a better advisor for my master study. Besides my advisor, I would like to thank the rest of my thesis committee: Professor Nian Sun and Professor Vinay Ingle, for their insightful comments and encouragement. Finally, I would like to express my profound gratitude to my parents for providing me with support and continuous encouragement throughout the writing of this thesis and my life in general. iv TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii Chapter 1 Introduction ........................................................................................................ 1 Chapter 2 Nonnegative Matrix............................................................................................ 3 2.1. Nonnegative Matrices and Perron-Frobenious Theorem ......................................... 3 2.2. Reducible matrix ...................................................................................................... 4 2.3. Irreducible Matrix .................................................................................................... 5 2.4. Primitive Matrix ....................................................................................................... 5 2.5. Stochastic matrix ...................................................................................................... 6 2.6. M-Matrix .................................................................................................................. 6 2.7. Metzler Matrix ......................................................................................................... 7 2.8. Symmetric matrix..................................................................................................... 8 2.9. Non-square Nonnegative Matrix.............................................................................. 8 Chapter 3 SQR-NMF for the initialization of NMF ......................................................... 10 3.1. Nonnegative Matrix Factorization ......................................................................... 10 3.2. SVD based initialization: SVD-NMF .................................................................... 12 3.3. Eigenvalue decomposition based initialization: SQR-NMF .................................. 13 3.3.1 SQR-NMF initialize with eigenvalue and eigenvector .................................... 14 3.3.2 SQR-NMF initialize with symmetric matrix ................................................... 14 Chapter 4 Simulation Results and Comparison ................................................................ 16 4.1. Simulation results for MU algorithm ..................................................................... 16 v 4.1.1 Comparison w.r.t fixed factorization rank and increasing iteration times ....... 16 4.1.2 Comparison w.r.t fixed iteration time and increasing factorization rank ........ 17 4.1.3 Reconstruction images ..................................................................................... 18 4.2. Simulation results for divergence-reducing algorithm .......................................... 19 4.2.1 Comparison w.r.t fixed factorization rank and increasing iteration times ....... 19 4.2.2 Comparison w.r.t fixed iteration time and increasing factorization rank ........ 19 4.3. Numerical results for different complementary elements ...................................... 20 4.3.1 Comparison w.r.t fixed factorization rank and increasing iteration times ....... 20 4.3.2 Reconstruction images ..................................................................................... 21 Chapter 5 Conclusion ........................................................................................................ 23 REFERENCES ................................................................................................................. 24 APPENDIX ....................................................................................................................... 26 vi LIST OF TABLES Table 1 Factorization rank of processing 1 image with different extraction ratio ............ 13 Table 2 Factorization rank of processing 5 images with different extraction ratio .......... 13 vii LIST OF FIGURES Figure 1 Errors of reconstruction using MU algorithm .................................................... 16 Figure 2 Errors of reconstruction using MU algorithm .................................................... 17 Figure 3 Errors of reconstruction using MU algorithm with fixed iteration ..................... 17 Figure 4 Reconstruction images....................................................................................... 18 Figure 5 Errors of reconstruction using divergence-reducing algorithm .......................... 19 Figure 6 Errors using divergence-reducing algorithm with fixed iteration ...................... 20 Figure 7 Errors of adding different complementary elements .......................................... 21 Figure 8 Reconstruction images........................................................................................ 22 1 Chapter 1 Introduction Nonnegative matrix factorization (NMF) has become a widely used method in analyzing large datasets, since it extracts features from a large set of data vectors. It is a kind of factorization that constrains the elements of both components and the expansion coefficients to be non-negative. Non-negative matrix factorization is a useful method in reducing the dimension of large datasets. In the paper Learning the parts of objects by non-negative matrix factorization published by Lee and Seung[1], they presented how NMF could learn parts of objects in facial images. It is intuited by the idea of combining the parts to form the whole. Negative values is admissible, but lose physical meaning in practice. The factorization of matrices representing complex multidimensional datasets is the basis of several commonly applied techniques for pattern recognition and unsupervised clustering. Similarly to principal components analysis or independent component analysis, the objective of non-negative matrix factorization (NMF) is to explain the original data with limited basis components and coefficients, which when combined together approximate the original data as accurately as possible. The NMF specializes in that it constrained both the matrix representing the basis components as well as the matrix of mixture coefficients to have non-negative entries, and that no orthogonality or independence constraints are imposed on the basis components. This leads to a simple and intuitive interpretation of the factors in NMF, and allows the basis components to overlap. Because of its definition[1], the NMF method has been successfully applied in several fields including image recognition and pattern recognition, signal processing and text mining[2]. NMF has also been applied in biological industries. It is used to obtain new insights into cancer type discovery based on gene expression microarrays[3], for the functional characterization of genes[4], to predict cis-regulating elements from positional word count matrices[5] and, for phenotype prediction using cross-platform microarray data[6]. The popularity of the NMF approach derives essentially from three properties that distinguish it from standard decomposition techniques. 2 Firstly, the matrix factors are nonnegative by definition, which allows their intuitive interpretation as real underlying components within the context defined by the original data. The basic components can be directly interpreted as parts or basis samples,
Recommended publications
  • Parametrizations of K-Nonnegative Matrices
    Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5].
    [Show full text]
  • Crystals and Total Positivity on Orientable Surfaces 3
    CRYSTALS AND TOTAL POSITIVITY ON ORIENTABLE SURFACES THOMAS LAM AND PAVLO PYLYAVSKYY Abstract. We develop a combinatorial model of networks on orientable surfaces, and study weight and homology generating functions of paths and cycles in these networks. Network transformations preserving these generating functions are investigated. We describe in terms of our model the crystal structure and R-matrix of the affine geometric crystal of products of symmetric and dual symmetric powers of type A. Local realizations of the R-matrix and crystal actions are used to construct a double affine geometric crystal on a torus, generalizing the commutation result of Kajiwara-Noumi- Yamada [KNY] and an observation of Berenstein-Kazhdan [BK07b]. We show that our model on a cylinder gives a decomposition and parametrization of the totally nonnegative part of the rational unipotent loop group of GLn. Contents 1. Introduction 3 1.1. Networks on orientable surfaces 3 1.2. Factorizations and parametrizations of totally positive matrices 4 1.3. Crystals and networks 5 1.4. Measurements and moves 6 1.5. Symmetric functions and loop symmetric functions 7 1.6. Comparison of examples 7 Part 1. Boundary measurements on oriented surfaces 9 2. Networks and measurements 9 2.1. Oriented networks on surfaces 9 2.2. Polygon representation of oriented surfaces 9 2.3. Highway paths and cycles 10 arXiv:1008.1949v1 [math.CO] 11 Aug 2010 2.4. Boundary and cycle measurements 10 2.5. Torus with one vertex 11 2.6. Flows and intersection products in homology 12 2.7. Polynomiality 14 2.8. Rationality 15 2.9.
    [Show full text]
  • Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints
    Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints A Dissertation Presented by Amirreza Oghbaee to The Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering Northeastern University Boston, Massachusetts April 2018 To my parents for their endless love and support i Contents List of Figures vi Acknowledgments vii Abstract of the Dissertation viii 1 Introduction 1 2 Matrices with Special Structures 4 2.1 Nonnegative (Positive) and Metzler Matrices . 4 2.1.1 Nonnegative Matrices and Eigenvalue Characterization . 6 2.1.2 Metzler Matrices . 8 2.1.3 Z-Matrices . 10 2.1.4 M-Matrices . 10 2.1.5 Totally Nonnegative (Positive) Matrices and Strictly Metzler Matrices . 12 2.2 Symmetric Matrices . 14 2.2.1 Properties of Symmetric Matrices . 14 2.2.2 Symmetrizer and Symmetrization . 15 2.2.3 Quadratic Form and Eigenvalues Characterization of Symmetric Matrices . 19 2.3 Nonnegative and Metzler Symmetric Matrices . 22 3 Positive and Symmetric Systems 27 3.1 Positive Systems . 27 3.1.1 Externally Positive Systems . 27 3.1.2 Internally Positive Systems . 29 3.1.3 Asymptotic Stability . 33 3.1.4 Bounded-Input Bounded-Output (BIBO) Stability . 34 3.1.5 Asymptotic Stability using Lyapunov Equation . 37 3.1.6 Robust Stability of Perturbed Systems . 38 3.1.7 Stability Radius . 40 3.2 Symmetric Systems . 43 3.3 Positive Symmetric Systems . 47 ii 4 Positive Stabilization of Dynamic Systems 50 4.1 Metzlerian Stabilization . 50 4.2 Maximizing the stability radius by state feedback .
    [Show full text]
  • A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality
    Electrical and Computer Engineering Publications Electrical and Computer Engineering 6-15-2017 A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality Songtao Lu Iowa State University, [email protected] Mingyi Hong Iowa State University Zhengdao Wang Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ece_pubs Part of the Industrial Technology Commons, and the Signal Processing Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ece_pubs/162. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Electrical and Computer Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality Abstract Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection, and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions ear provided that guarantee the global and local optimality of the obtained solutions.
    [Show full text]
  • On Control of Discrete-Time LTI Positive Systems
    Applied Mathematical Sciences, Vol. 11, 2017, no. 50, 2459 - 2476 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.78246 On Control of Discrete-time LTI Positive Systems DuˇsanKrokavec and Anna Filasov´a Department of Cybernetics and Artificial Intelligence Faculty of Electrical Engineering and Informatics Technical University of Koˇsice Letn´a9/B, 042 00 Koˇsice,Slovakia Copyright c 2017 DuˇsanKrokavec and Anna Filasov´a.This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Incorporating an associated structure of constraints in the form of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive linear system structures, new conditions are presented with which the state-feedback controllers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples. Keywords: state feedback stabilization, linear discrete-time positive sys- tems, Schur matrices, linear matrix inequalities, asymptotic stability 1 Introduction Positive systems are often found in the modeling and control of engineering and industrial processes, whose state variables represent quantities that do not have meaning unless they are nonnegative [26]. The mathematical theory of Metzler matrices has a close relationship to the theory of positive linear time- invariant (LTI) dynamical systems, since in the state-space description form the system dynamics matrix of a positive systems is Metzler and the system input and output matrices are nonnegative matrices. Other references can find, e.g., in [8], [16], [19], [28]. The problem of Metzlerian system stabilization has been previously stud- ied, especially for single input and single output (SISO) continuous-time linear 2460 D.
    [Show full text]
  • Minimal Rank Decoupling of Full-Lattice CMV Operators With
    MINIMAL RANK DECOUPLING OF FULL-LATTICE CMV OPERATORS WITH SCALAR- AND MATRIX-VALUED VERBLUNSKY COEFFICIENTS STEPHEN CLARK, FRITZ GESZTESY, AND MAXIM ZINCHENKO Abstract. Relations between half- and full-lattice CMV operators with scalar- and matrix-valued Verblunsky coefficients are investigated. In particular, the decoupling of full-lattice CMV oper- ators into a direct sum of two half-lattice CMV operators by a perturbation of minimal rank is studied. Contrary to the Jacobi case, decoupling a full-lattice CMV matrix by changing one of the Verblunsky coefficients results in a perturbation of twice the minimal rank. The explicit form for the minimal rank perturbation and the resulting two half-lattice CMV matrices are obtained. In addition, formulas relating the Weyl–Titchmarsh m-functions (resp., matrices) associated with the involved CMV operators and their Green’s functions (resp., matrices) are derived. 1. Introduction CMV operators are a special class of unitary semi-infinite or doubly-infinite five-diagonal matrices which received enormous attention in recent years. We refer to (2.8) and (3.18) for the explicit form of doubly infinite CMV operators on Z in the case of scalar, respectively, matrix-valued Verblunsky coefficients. For the corresponding half-lattice CMV operators we refer to (2.16) and (3.26). The actual history of CMV operators (with scalar Verblunsky coefficients) is somewhat intrigu- ing: The corresponding unitary semi-infinite five-diagonal matrices were first introduced in 1991 by Bunse–Gerstner and Elsner [15], and subsequently discussed in detail by Watkins [82] in 1993 (cf. the discussion in Simon [73]). They were subsequently rediscovered by Cantero, Moral, and Vel´azquez (CMV) in [17].
    [Show full text]
  • Random Matrices, Magic Squares and Matching Polynomials
    Random Matrices, Magic Squares and Matching Polynomials Persi Diaconis Alex Gamburd∗ Departments of Mathematics and Statistics Department of Mathematics Stanford University, Stanford, CA 94305 Stanford University, Stanford, CA 94305 [email protected] [email protected] Submitted: Jul 22, 2003; Accepted: Dec 23, 2003; Published: Jun 3, 2004 MR Subject Classifications: 05A15, 05E05, 05E10, 05E35, 11M06, 15A52, 60B11, 60B15 Dedicated to Richard Stanley on the occasion of his 60th birthday Abstract Characteristic polynomials of random unitary matrices have been intensively studied in recent years: by number theorists in connection with Riemann zeta- function, and by theoretical physicists in connection with Quantum Chaos. In particular, Haake and collaborators have computed the variance of the coefficients of these polynomials and raised the question of computing the higher moments. The answer turns out to be intimately related to counting integer stochastic matrices (magic squares). Similar results are obtained for the moments of secular coefficients of random matrices from orthogonal and symplectic groups. Combinatorial meaning of the moments of the secular coefficients of GUE matrices is also investigated and the connection with matching polynomials is discussed. 1 Introduction Two noteworthy developments took place recently in Random Matrix Theory. One is the discovery and exploitation of the connections between eigenvalue statistics and the longest- increasing subsequence problem in enumerative combinatorics [1, 4, 5, 47, 59]; another is the outburst of interest in characteristic polynomials of Random Matrices and associated global statistics, particularly in connection with the moments of the Riemann zeta function and other L-functions [41, 14, 35, 36, 15, 16]. The purpose of this paper is to point out some connections between the distribution of the coefficients of characteristic polynomials of random matrices and some classical problems in enumerative combinatorics.
    [Show full text]
  • Z Matrices, Linear Transformations, and Tensors
    Z matrices, linear transformations, and tensors M. Seetharama Gowda Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland, USA [email protected] *************** International Conference on Tensors, Matrices, and their Applications Tianjin, China May 21-24, 2016 Z matrices, linear transformations, and tensors – p. 1/35 This is an expository talk on Z matrices, transformations on proper cones, and tensors. The objective is to show that these have very similar properties. Z matrices, linear transformations, and tensors – p. 2/35 Outline • The Z-property • M and strong (nonsingular) M-properties • The P -property • Complementarity problems • Zero-sum games • Dynamical systems Z matrices, linear transformations, and tensors – p. 3/35 Some notation • Rn : The Euclidean n-space of column vectors. n n • R+: Nonnegative orthant, x ∈ R+ ⇔ x ≥ 0. n n n • R++ : The interior of R+, x ∈++⇔ x > 0. • hx,yi: Usual inner product between x and y. • Rn×n: The space of all n × n real matrices. • σ(A): The set of all eigenvalues of A ∈ Rn×n. Z matrices, linear transformations, and tensors – p. 4/35 The Z-property A =[aij] is an n × n real matrix • A is a Z-matrix if aij ≤ 0 for all i =6 j. (In economics literature, −A is a Metzler matrix.) • We can write A = rI − B, where r ∈ R and B ≥ 0. Let ρ(B) denote the spectral radius of B. • A is an M-matrix if r ≥ ρ(B), • nonsingular (strong) M-matrix if r > ρ(B). Z matrices, linear transformations, and tensors – p. 5/35 The P -property • A is a P -matrix if all its principal minors are positive.
    [Show full text]
  • Totally Positive Toeplitz Matrices and Quantum Cohomology of Partial Flag Varieties
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 2, Pages 363{392 S 0894-0347(02)00412-5 Article electronically published on November 29, 2002 TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES KONSTANZE RIETSCH 1. Introduction A matrix is called totally nonnegative if all of its minors are nonnegative. Totally nonnegative infinite Toeplitz matrices were studied first in the 1950's. They are characterized in the following theorem conjectured by Schoenberg and proved by Edrei. Theorem 1.1 ([10]). The Toeplitz matrix ∞×1 1 a1 1 0 1 a2 a1 1 B . .. C B . a2 a1 . C B C A = B .. .. .. C B ad . C B C B .. .. C Bad+1 . a1 1 C B C B . C B . .. .. a a .. C B 2 1 C B . C B .. .. .. .. ..C B C is totally nonnegative@ precisely if its generating function is of theA form, 2 (1 + βit) 1+a1t + a2t + =exp(tα) ; ··· (1 γit) i Y2N − where α R 0 and β1 β2 0,γ1 γ2 0 with βi + γi < . 2 ≥ ≥ ≥···≥ ≥ ≥···≥ 1 This beautiful result has been reproved many times; see [32]P for anP overview. It may be thought of as giving a parameterization of the totally nonnegative Toeplitz matrices by ~ N N ~ (α;(βi)i; (~γi)i) R 0 R 0 R 0 i(βi +~γi) < ; f 2 ≥ × ≥ × ≥ j 1g i X2N where β~i = βi βi+1 andγ ~i = γi γi+1. − − Received by the editors December 10, 2001 and, in revised form, September 14, 2002. 2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.
    [Show full text]
  • Tropical Totally Positive Matrices 3
    TROPICAL TOTALLY POSITIVE MATRICES STEPHANE´ GAUBERT AND ADI NIV Abstract. We investigate the tropical analogues of totally positive and totally nonnegative matrices. These arise when considering the images by the nonarchimedean valuation of the corresponding classes of matrices over a real nonarchimedean valued field, like the field of real Puiseux series. We show that the nonarchimedean valuation sends the totally positive matrices precisely to the Monge matrices. This leads to explicit polyhedral representations of the tropical analogues of totally positive and totally nonnegative matrices. We also show that tropical totally nonnegative matrices with a finite permanent can be factorized in terms of elementary matrices. We finally determine the eigenvalues of tropical totally nonnegative matrices, and relate them with the eigenvalues of totally nonnegative matrices over nonarchimedean fields. Keywords: Total positivity; total nonnegativity; tropical geometry; compound matrix; permanent; Monge matrices; Grassmannian; Pl¨ucker coordinates. AMSC: 15A15 (Primary), 15A09, 15A18, 15A24, 15A29, 15A75, 15A80, 15B99. 1. Introduction 1.1. Motivation and background. A real matrix is said to be totally positive (resp. totally nonneg- ative) if all its minors are positive (resp. nonnegative). These matrices arise in several classical fields, such as oscillatory matrices (see e.g. [And87, §4]), or approximation theory (see e.g. [GM96]); they have appeared more recently in the theory of canonical bases for quantum groups [BFZ96]. We refer the reader to the monograph of Fallat and Johnson in [FJ11] or to the survey of Fomin and Zelevin- sky [FZ00] for more information. Totally positive/nonnegative matrices can be defined over any real closed field, and in particular, over nonarchimedean fields, like the field of Puiseux series with real coefficients.
    [Show full text]
  • [Math.QA] 3 Dec 2001 Minors)
    QUANTUM COHOMOLOGY RINGS OF GRASSMANNIANS AND TOTAL POSITIVITY KONSTANZE RIETSCH Abstract. We give a proof of a result of D. Peterson’s identifying the quan- tum cohomology ring of a Grassmannian with the reduced coordinate ring of a certain subvariety of GLn. The totally positive part of this subvariety is then constructed and we give closed formulas for the values of the Schubert basis elements on the totally positive points. We then use the developed methods to give a new proof of a formula of Vafa and Intriligator and Bertram for the structure constants (Gromov–Witten invariants). Finally, we use the positiv- ity of these Gromov–Witten invariants to prove certain inequalities for Schur polynomials at roots of unity. 1. Introduction + The group U of unipotent upper–triangular matrices in GLn have on their coordinate ring a nice basis with positive structure constants. Namely one has the dual of the classical limit of Lusztig’s geometrically constructed canonical basis of the quantized enveloping algebra. The existence of this basis has been closely tied [10] to the ‘totally positive part’ of U + (the matrices with only nonnegative minors). + In this paper we study certain remarkable subvarieties Vd,n of U which come up in the stabilizer of a particular standard principal nilpotent element e as clo- sures of the 1–dimensional components under Bruhat decomposition. By a theorem of Dale Peterson’s [16] the quantum cohomology rings of Grassmannians may be identified with the coordinate rings of these varieties. Therefore like U + itself these varieties have coordinate rings with ‘canonical’ bases on them (this time coming from Schubert bases), and with positive structure constants.
    [Show full text]
  • An Alternating Sequence Iteration's Method for Computing Largest Real Part Eigenvalue of Essentially Positive Matrices
    Computa & tio d n ie a l l Oepomo, J Appl Computat Math 2016, 5:6 p M p a Journal of A t h f DOI: 10.4172/2168-9679.1000334 e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access An Alternating Sequence Iteration’s Method for Computing Largest Real Part Eigenvalue of Essentially Positive Matrices: Collatz and Perron- Frobernius’ Approach Tedja Santanoe Oepomo* Mathematics Division, Los Angeles Harbor College/West LA College, and School of International Business, California International University, USA Abstract This paper describes a new numerical method for the numerical solution of eigenvalues with the largest real part of essentially positive matrices. Finally, a numerical discussion is given to derive the required number of mathematical operations of the new method. Comparisons between the new method and several well know ones, such as Power and QR methods, were discussed. The process consists of computing lower and upper bounds which are monotonically approximating the eigenvalue. Keywords: Collatz’s theorem; Perron-Frobernius’ theorem; Background Eigenvalue Let A be an n x n essentially positive matrix. The new method can AMS subject classifications: 15A48; 15A18; 15A99; 65F10 and 65F15 be used to numerically determine the eigenvalue λA with the largest real part and the corresponding positive eigenvector x[A] for essentially Introduction positive matrices. This numerical method is based on previous manuscript [16]. A matrix A=(a ) is an essentially positive matrix if a A variety of numerical methods for finding eigenvalues of non- ij ij negative irreducible matrices have been reported over the last decades, ≥ 0 for all i ≠ j, 1 ≤ i, j ≤ n, and A is irreducible.
    [Show full text]