LMI Based Principles in Strictly Metzlerian Systems Control Design

Total Page:16

File Type:pdf, Size:1020Kb

LMI Based Principles in Strictly Metzlerian Systems Control Design Hindawi Mathematical Problems in Engineering Volume 2018, Article ID 9590253, 14 pages https://doi.org/10.1155/2018/9590253 Research Article LMI Based Principles in Strictly Metzlerian Systems Control Design Dušan Krokavec and Anna Filasová Department of Cybernetics and Artifcial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Koˇsice, Letna9,04200Ko´ ˇsice, Slovakia Correspondence should be addressed to Duˇsan Krokavec; [email protected] Received 5 August 2017; Revised 15 January 2018; Accepted 22 April 2018; Published 17 July 2018 Academic Editor: Marzio Pennisi Copyright © 2018 Duˇsan Krokavec and Anna Filasova.´ Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Te paper is concerned with the design requirements that relax the existing conditions reported in the previous literature for continuous-time linear positive systems, reformulating the linear programming approach by the linear matrix inequalities principle. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteeing asymptotic stability of positive system structures, the conditions are presented, with which the state-feedback controllers and the system state observers can be designed. A numerical example illustrates the proposed conditions. 1. Introduction design. Te second group of methods represents [8], where LMI conditions to state observer design for positive linear Positive systems are ofen found in the modeling and control systems are presented, but the observer is not of Luenberger of engineering and industrial processes, whose state variables type since the standard observer gain matrix does not specify represent quantities that do not have meaning unless they the observer dynamics and an additive matrix is used to are nonnegative [1]. Te mathematical theory of Metzler defne the observer stability. matrices has a close relationship to the theory of positive Te most similar idea to the one presented in this linear continuous-time dynamical systems, since in the state- paper is the approach given in [9, 10], using formulation space description form the system dynamics matrix of a based on the set of LMIs. Tese approaches are considered positive systems is Metzler and the system input and output for both positive and nonpositive systems. However, since matrices are nonnegative matrices. In abbreviated terms, such nondiagonal matrix variables are exploited, they do not in continuous-time linear systems are denoted in the following general guarantee diagonally dominant Metzler structure of as Metzlerian systems. Stability and stabilization of such sys- the closed-loop system matrix. Te approach of the present temsarereported,e.g.,in[2–6]andvariousmethodsbased paper makes it possible to achieve this additional constraint, on linear programming (LP) and linear matrix inequalities if required. (LMI) are considered for positive stabilization and observer Te linear programming approach was efectively used designs, as it is further elaborated in subsequent paragraphs. forstaticoutputfeedbackdesignofpositivesystemsin[11, Te task of the state observer design for positive linear 12], and [13, 14] consider both positive observer and control system is solved in [7] using the coordinates transformation. design with bounded control constraint. If the coordinate transform matrix is a solution of the Te main motivation of this paper is to give design specifed Silvester equation and its inverse is nonnegative, conditions for stabilization of linear positive continuous-time the positive observer is constructed only for transformed systems by the state-feedback, as well as the conditions for state coordinates. Another proposed way is to transform Lunberger state observers design in the same systems struc- system into controllable and uncontrollable parts to obtain tures, using the formulation based on strict LMIs. Analyzing a reduced order realization, suitable for positive observer structures of the closed-loop system matrix, and the observer 2 Mathematical Problems in Engineering system matrix, the resulting algebraic constraints, which lead A Metzler matrix � is called strictly Metzler if its diagonal to strictly Metzler matrices, are formulated as a set of LMIs elements are negative and its of-diagonal elements are with diagonal matrix variables. Tis set is extended by an positive.AMetzlermatrixisstableifitisstrictlyMetzlerand LMI, refecting the Lyapunov stability condition [15]. Since Hurwitz. the stability is posed as an LMI, constraints implying from the �×� strictly Metzler matrix structure in the form of LMIs results Proposition 4 (see [21]). AMetzlermatrix� ∈ R is stable also in the LMI formulation [16]. Advantages may also be ifandonlyifallprincipalminorsofthematrix−� are positive. added to the fact that these conditions can be adapted to the Proposition 5 � ∈ R�×� synthesis of nonnegative gain matrices of the regulator or (see [22, 23]). Asquarematrix is estimator, as well as for the synthesis resulting in a Metzler said to be strictly diagonally dominant if matrix structure, if the conditions for its zero nondiagonal � � � � �� � > ∑ �� � ∀� ∈ ⟨1, �⟩ , elements are satisfed. Preferring LMI structure, the proofs � ��� � �� � �=� ̸ (3) areofstandardwayinthesenseofLyapunovprincipleand refect the facts when optimization in positive systems has where ��� denotes the entry in the �th row and �th column. LMIs representation. If the matrix is strictly diagonally dominant and all its Te paper is organized as follows. Afer the Introduction, diagonal elements are negative, then the real parts of all its Section 2 presents some preliminaries, including the char- eigenvalues are negative. A strictly Metzler matrix is stable if acterization of positive systems. A newly introduced set of it is strictly diagonally dominant. LMIs, describing the design conditions for strictly Metzlerian SISO systems, is theoretically substantiated and proven in To highlight some features of positive systems, presented Section 3 and, subsequently, the design conditions for strictly exposition is placed within the framework introduced by the Metzlerian MIMO systems are generalized in Section 4. An monograph [17], p. 8 and 41. example is provided to demonstrate the proposed approach in Section 5, while Section 6 draws some conclusions. Proposition 6 �(�) �≥0 � � (see [17]). Asolution of (1) for is Used notations are conventional so that � , � denote asymptotically stable and positive if � is stable Metzler matrix, � � � ∈ �×� � transpose of the vector and matrix ,respectively, � ∈ R+ is nonnegative matrix and �(�) ∈ R+ for given �(�) ∈ � �×� � R+, � ∈ R+ denote nonnegative vector and nonnegative R+ and �(0) ∈ R+.Telinearsystem(1),(2)isasymptotically � �×� � = � ≻0 � stable and positive if � is stable Metzler matrix, � ∈ R+ , � ∈ matrix, means that is symmetric positive �×� � defnite matrix, �(∗) indicates the eigenvalue spectrum of R+ are nonnegative matrices and �(�) ∈ R+ for all �(�) ∈ R� �(0) ∈ R asquarematrix,thesymbol�� marks the �-th order unit + and +.Telinearsystem(1),(2)isasymptotically [⋅] R� R�×� stableandexternallypositiveif� is stable Metzler matrix and matrix, diag enters up a diagonal matrix, , refer to �×� �×� the set of all �-dimensional real vectors and �×�real matrices, � ∈ R+ , � ∈ R+ are nonnegative matrices. � �×� respectively, and R�, R+ refertothesetofall�-dimensional real nonnegative vectors and �×�real nonnegative matrices, In process control, (2) defnes the measurement sub- �(�) respectively. system on the plant and defnes the output variables, whose values must be complied. If the � matrix would be not nonnegative, some of the output variables could be negative. 2. System Description Tus, considering the nonnegative state variables and � ∈ R�×� In the following the Metzlerian class of positive linear dynam- + ,theoutputvariablesarealsononnegative. ical systems is considered where state-space description is Proposition 7 ([24], Lyapunov inequalities). Autonomous �̇ (�) = �� (�) + �� (�) , (1) system (1) is asymptotically stable if there exist symmetric �×� �×� positive defnite matrices �, � ∈ R or �, � ∈ R such � (�) = �� (�) , (2) that � � � where �(�) ∈ R , �(�) ∈ R , �(�) ∈ R stand for state, � �×� �×� � = � ≻0, control input, and measurable output, � ∈ R , � ∈ R , �×� � � ∈ R . � = � ≻0, (4) Defnition 1 ([17], positive linear system). Te linear system �� + ��� + � ≺0, (1), (2) is said to be positive if and only if for every nonnegative initial state and for every nonnegative input its state and � = �� ≻0, output are nonnegative. � = �� ≻0, �×� � (5) Defnition 2. Amatrix� ∈ R+ and a vector � ∈ R+ are � nonnegative if all its entries are nonnegative and at least one �� + � � + � ≺0. is positive. Note that the equivalent statements (4) and (5) are given �×� Defnition 3 (see [18–20]). A square matrix � ∈ R is to circumvent formulations with inverse matrices in the Metzler matrix if its of-diagonal elements are nonnegative. following sections, since direct use (4) leads to bilinear matrix Mathematical Problems in Engineering 3 inequality in the design of the observer, and direct use (5) 3. SISO Strictly Metzlerian Systems leads to bilinear matrix inequality in the synthesis of the regulator. It is easily verifable that premultiplying the lef side Te systems under consideration in this section are linear
Recommended publications
  • Parametrizations of K-Nonnegative Matrices
    Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5].
    [Show full text]
  • Crystals and Total Positivity on Orientable Surfaces 3
    CRYSTALS AND TOTAL POSITIVITY ON ORIENTABLE SURFACES THOMAS LAM AND PAVLO PYLYAVSKYY Abstract. We develop a combinatorial model of networks on orientable surfaces, and study weight and homology generating functions of paths and cycles in these networks. Network transformations preserving these generating functions are investigated. We describe in terms of our model the crystal structure and R-matrix of the affine geometric crystal of products of symmetric and dual symmetric powers of type A. Local realizations of the R-matrix and crystal actions are used to construct a double affine geometric crystal on a torus, generalizing the commutation result of Kajiwara-Noumi- Yamada [KNY] and an observation of Berenstein-Kazhdan [BK07b]. We show that our model on a cylinder gives a decomposition and parametrization of the totally nonnegative part of the rational unipotent loop group of GLn. Contents 1. Introduction 3 1.1. Networks on orientable surfaces 3 1.2. Factorizations and parametrizations of totally positive matrices 4 1.3. Crystals and networks 5 1.4. Measurements and moves 6 1.5. Symmetric functions and loop symmetric functions 7 1.6. Comparison of examples 7 Part 1. Boundary measurements on oriented surfaces 9 2. Networks and measurements 9 2.1. Oriented networks on surfaces 9 2.2. Polygon representation of oriented surfaces 9 2.3. Highway paths and cycles 10 arXiv:1008.1949v1 [math.CO] 11 Aug 2010 2.4. Boundary and cycle measurements 10 2.5. Torus with one vertex 11 2.6. Flows and intersection products in homology 12 2.7. Polynomiality 14 2.8. Rationality 15 2.9.
    [Show full text]
  • Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints
    Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints A Dissertation Presented by Amirreza Oghbaee to The Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering Northeastern University Boston, Massachusetts April 2018 To my parents for their endless love and support i Contents List of Figures vi Acknowledgments vii Abstract of the Dissertation viii 1 Introduction 1 2 Matrices with Special Structures 4 2.1 Nonnegative (Positive) and Metzler Matrices . 4 2.1.1 Nonnegative Matrices and Eigenvalue Characterization . 6 2.1.2 Metzler Matrices . 8 2.1.3 Z-Matrices . 10 2.1.4 M-Matrices . 10 2.1.5 Totally Nonnegative (Positive) Matrices and Strictly Metzler Matrices . 12 2.2 Symmetric Matrices . 14 2.2.1 Properties of Symmetric Matrices . 14 2.2.2 Symmetrizer and Symmetrization . 15 2.2.3 Quadratic Form and Eigenvalues Characterization of Symmetric Matrices . 19 2.3 Nonnegative and Metzler Symmetric Matrices . 22 3 Positive and Symmetric Systems 27 3.1 Positive Systems . 27 3.1.1 Externally Positive Systems . 27 3.1.2 Internally Positive Systems . 29 3.1.3 Asymptotic Stability . 33 3.1.4 Bounded-Input Bounded-Output (BIBO) Stability . 34 3.1.5 Asymptotic Stability using Lyapunov Equation . 37 3.1.6 Robust Stability of Perturbed Systems . 38 3.1.7 Stability Radius . 40 3.2 Symmetric Systems . 43 3.3 Positive Symmetric Systems . 47 ii 4 Positive Stabilization of Dynamic Systems 50 4.1 Metzlerian Stabilization . 50 4.2 Maximizing the stability radius by state feedback .
    [Show full text]
  • A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality
    Electrical and Computer Engineering Publications Electrical and Computer Engineering 6-15-2017 A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality Songtao Lu Iowa State University, [email protected] Mingyi Hong Iowa State University Zhengdao Wang Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ece_pubs Part of the Industrial Technology Commons, and the Signal Processing Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ece_pubs/162. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Electrical and Computer Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality Abstract Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection, and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions ear provided that guarantee the global and local optimality of the obtained solutions.
    [Show full text]
  • On Control of Discrete-Time LTI Positive Systems
    Applied Mathematical Sciences, Vol. 11, 2017, no. 50, 2459 - 2476 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.78246 On Control of Discrete-time LTI Positive Systems DuˇsanKrokavec and Anna Filasov´a Department of Cybernetics and Artificial Intelligence Faculty of Electrical Engineering and Informatics Technical University of Koˇsice Letn´a9/B, 042 00 Koˇsice,Slovakia Copyright c 2017 DuˇsanKrokavec and Anna Filasov´a.This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Incorporating an associated structure of constraints in the form of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive linear system structures, new conditions are presented with which the state-feedback controllers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples. Keywords: state feedback stabilization, linear discrete-time positive sys- tems, Schur matrices, linear matrix inequalities, asymptotic stability 1 Introduction Positive systems are often found in the modeling and control of engineering and industrial processes, whose state variables represent quantities that do not have meaning unless they are nonnegative [26]. The mathematical theory of Metzler matrices has a close relationship to the theory of positive linear time- invariant (LTI) dynamical systems, since in the state-space description form the system dynamics matrix of a positive systems is Metzler and the system input and output matrices are nonnegative matrices. Other references can find, e.g., in [8], [16], [19], [28]. The problem of Metzlerian system stabilization has been previously stud- ied, especially for single input and single output (SISO) continuous-time linear 2460 D.
    [Show full text]
  • Minimal Rank Decoupling of Full-Lattice CMV Operators With
    MINIMAL RANK DECOUPLING OF FULL-LATTICE CMV OPERATORS WITH SCALAR- AND MATRIX-VALUED VERBLUNSKY COEFFICIENTS STEPHEN CLARK, FRITZ GESZTESY, AND MAXIM ZINCHENKO Abstract. Relations between half- and full-lattice CMV operators with scalar- and matrix-valued Verblunsky coefficients are investigated. In particular, the decoupling of full-lattice CMV oper- ators into a direct sum of two half-lattice CMV operators by a perturbation of minimal rank is studied. Contrary to the Jacobi case, decoupling a full-lattice CMV matrix by changing one of the Verblunsky coefficients results in a perturbation of twice the minimal rank. The explicit form for the minimal rank perturbation and the resulting two half-lattice CMV matrices are obtained. In addition, formulas relating the Weyl–Titchmarsh m-functions (resp., matrices) associated with the involved CMV operators and their Green’s functions (resp., matrices) are derived. 1. Introduction CMV operators are a special class of unitary semi-infinite or doubly-infinite five-diagonal matrices which received enormous attention in recent years. We refer to (2.8) and (3.18) for the explicit form of doubly infinite CMV operators on Z in the case of scalar, respectively, matrix-valued Verblunsky coefficients. For the corresponding half-lattice CMV operators we refer to (2.16) and (3.26). The actual history of CMV operators (with scalar Verblunsky coefficients) is somewhat intrigu- ing: The corresponding unitary semi-infinite five-diagonal matrices were first introduced in 1991 by Bunse–Gerstner and Elsner [15], and subsequently discussed in detail by Watkins [82] in 1993 (cf. the discussion in Simon [73]). They were subsequently rediscovered by Cantero, Moral, and Vel´azquez (CMV) in [17].
    [Show full text]
  • Random Matrices, Magic Squares and Matching Polynomials
    Random Matrices, Magic Squares and Matching Polynomials Persi Diaconis Alex Gamburd∗ Departments of Mathematics and Statistics Department of Mathematics Stanford University, Stanford, CA 94305 Stanford University, Stanford, CA 94305 [email protected] [email protected] Submitted: Jul 22, 2003; Accepted: Dec 23, 2003; Published: Jun 3, 2004 MR Subject Classifications: 05A15, 05E05, 05E10, 05E35, 11M06, 15A52, 60B11, 60B15 Dedicated to Richard Stanley on the occasion of his 60th birthday Abstract Characteristic polynomials of random unitary matrices have been intensively studied in recent years: by number theorists in connection with Riemann zeta- function, and by theoretical physicists in connection with Quantum Chaos. In particular, Haake and collaborators have computed the variance of the coefficients of these polynomials and raised the question of computing the higher moments. The answer turns out to be intimately related to counting integer stochastic matrices (magic squares). Similar results are obtained for the moments of secular coefficients of random matrices from orthogonal and symplectic groups. Combinatorial meaning of the moments of the secular coefficients of GUE matrices is also investigated and the connection with matching polynomials is discussed. 1 Introduction Two noteworthy developments took place recently in Random Matrix Theory. One is the discovery and exploitation of the connections between eigenvalue statistics and the longest- increasing subsequence problem in enumerative combinatorics [1, 4, 5, 47, 59]; another is the outburst of interest in characteristic polynomials of Random Matrices and associated global statistics, particularly in connection with the moments of the Riemann zeta function and other L-functions [41, 14, 35, 36, 15, 16]. The purpose of this paper is to point out some connections between the distribution of the coefficients of characteristic polynomials of random matrices and some classical problems in enumerative combinatorics.
    [Show full text]
  • Z Matrices, Linear Transformations, and Tensors
    Z matrices, linear transformations, and tensors M. Seetharama Gowda Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland, USA [email protected] *************** International Conference on Tensors, Matrices, and their Applications Tianjin, China May 21-24, 2016 Z matrices, linear transformations, and tensors – p. 1/35 This is an expository talk on Z matrices, transformations on proper cones, and tensors. The objective is to show that these have very similar properties. Z matrices, linear transformations, and tensors – p. 2/35 Outline • The Z-property • M and strong (nonsingular) M-properties • The P -property • Complementarity problems • Zero-sum games • Dynamical systems Z matrices, linear transformations, and tensors – p. 3/35 Some notation • Rn : The Euclidean n-space of column vectors. n n • R+: Nonnegative orthant, x ∈ R+ ⇔ x ≥ 0. n n n • R++ : The interior of R+, x ∈++⇔ x > 0. • hx,yi: Usual inner product between x and y. • Rn×n: The space of all n × n real matrices. • σ(A): The set of all eigenvalues of A ∈ Rn×n. Z matrices, linear transformations, and tensors – p. 4/35 The Z-property A =[aij] is an n × n real matrix • A is a Z-matrix if aij ≤ 0 for all i =6 j. (In economics literature, −A is a Metzler matrix.) • We can write A = rI − B, where r ∈ R and B ≥ 0. Let ρ(B) denote the spectral radius of B. • A is an M-matrix if r ≥ ρ(B), • nonsingular (strong) M-matrix if r > ρ(B). Z matrices, linear transformations, and tensors – p. 5/35 The P -property • A is a P -matrix if all its principal minors are positive.
    [Show full text]
  • Totally Positive Toeplitz Matrices and Quantum Cohomology of Partial Flag Varieties
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 16, Number 2, Pages 363{392 S 0894-0347(02)00412-5 Article electronically published on November 29, 2002 TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES KONSTANZE RIETSCH 1. Introduction A matrix is called totally nonnegative if all of its minors are nonnegative. Totally nonnegative infinite Toeplitz matrices were studied first in the 1950's. They are characterized in the following theorem conjectured by Schoenberg and proved by Edrei. Theorem 1.1 ([10]). The Toeplitz matrix ∞×1 1 a1 1 0 1 a2 a1 1 B . .. C B . a2 a1 . C B C A = B .. .. .. C B ad . C B C B .. .. C Bad+1 . a1 1 C B C B . C B . .. .. a a .. C B 2 1 C B . C B .. .. .. .. ..C B C is totally nonnegative@ precisely if its generating function is of theA form, 2 (1 + βit) 1+a1t + a2t + =exp(tα) ; ··· (1 γit) i Y2N − where α R 0 and β1 β2 0,γ1 γ2 0 with βi + γi < . 2 ≥ ≥ ≥···≥ ≥ ≥···≥ 1 This beautiful result has been reproved many times; see [32]P for anP overview. It may be thought of as giving a parameterization of the totally nonnegative Toeplitz matrices by ~ N N ~ (α;(βi)i; (~γi)i) R 0 R 0 R 0 i(βi +~γi) < ; f 2 ≥ × ≥ × ≥ j 1g i X2N where β~i = βi βi+1 andγ ~i = γi γi+1. − − Received by the editors December 10, 2001 and, in revised form, September 14, 2002. 2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.
    [Show full text]
  • Tropical Totally Positive Matrices 3
    TROPICAL TOTALLY POSITIVE MATRICES STEPHANE´ GAUBERT AND ADI NIV Abstract. We investigate the tropical analogues of totally positive and totally nonnegative matrices. These arise when considering the images by the nonarchimedean valuation of the corresponding classes of matrices over a real nonarchimedean valued field, like the field of real Puiseux series. We show that the nonarchimedean valuation sends the totally positive matrices precisely to the Monge matrices. This leads to explicit polyhedral representations of the tropical analogues of totally positive and totally nonnegative matrices. We also show that tropical totally nonnegative matrices with a finite permanent can be factorized in terms of elementary matrices. We finally determine the eigenvalues of tropical totally nonnegative matrices, and relate them with the eigenvalues of totally nonnegative matrices over nonarchimedean fields. Keywords: Total positivity; total nonnegativity; tropical geometry; compound matrix; permanent; Monge matrices; Grassmannian; Pl¨ucker coordinates. AMSC: 15A15 (Primary), 15A09, 15A18, 15A24, 15A29, 15A75, 15A80, 15B99. 1. Introduction 1.1. Motivation and background. A real matrix is said to be totally positive (resp. totally nonneg- ative) if all its minors are positive (resp. nonnegative). These matrices arise in several classical fields, such as oscillatory matrices (see e.g. [And87, §4]), or approximation theory (see e.g. [GM96]); they have appeared more recently in the theory of canonical bases for quantum groups [BFZ96]. We refer the reader to the monograph of Fallat and Johnson in [FJ11] or to the survey of Fomin and Zelevin- sky [FZ00] for more information. Totally positive/nonnegative matrices can be defined over any real closed field, and in particular, over nonarchimedean fields, like the field of Puiseux series with real coefficients.
    [Show full text]
  • [Math.QA] 3 Dec 2001 Minors)
    QUANTUM COHOMOLOGY RINGS OF GRASSMANNIANS AND TOTAL POSITIVITY KONSTANZE RIETSCH Abstract. We give a proof of a result of D. Peterson’s identifying the quan- tum cohomology ring of a Grassmannian with the reduced coordinate ring of a certain subvariety of GLn. The totally positive part of this subvariety is then constructed and we give closed formulas for the values of the Schubert basis elements on the totally positive points. We then use the developed methods to give a new proof of a formula of Vafa and Intriligator and Bertram for the structure constants (Gromov–Witten invariants). Finally, we use the positiv- ity of these Gromov–Witten invariants to prove certain inequalities for Schur polynomials at roots of unity. 1. Introduction + The group U of unipotent upper–triangular matrices in GLn have on their coordinate ring a nice basis with positive structure constants. Namely one has the dual of the classical limit of Lusztig’s geometrically constructed canonical basis of the quantized enveloping algebra. The existence of this basis has been closely tied [10] to the ‘totally positive part’ of U + (the matrices with only nonnegative minors). + In this paper we study certain remarkable subvarieties Vd,n of U which come up in the stabilizer of a particular standard principal nilpotent element e as clo- sures of the 1–dimensional components under Bruhat decomposition. By a theorem of Dale Peterson’s [16] the quantum cohomology rings of Grassmannians may be identified with the coordinate rings of these varieties. Therefore like U + itself these varieties have coordinate rings with ‘canonical’ bases on them (this time coming from Schubert bases), and with positive structure constants.
    [Show full text]
  • An Alternating Sequence Iteration's Method for Computing Largest Real Part Eigenvalue of Essentially Positive Matrices
    Computa & tio d n ie a l l Oepomo, J Appl Computat Math 2016, 5:6 p M p a Journal of A t h f DOI: 10.4172/2168-9679.1000334 e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access An Alternating Sequence Iteration’s Method for Computing Largest Real Part Eigenvalue of Essentially Positive Matrices: Collatz and Perron- Frobernius’ Approach Tedja Santanoe Oepomo* Mathematics Division, Los Angeles Harbor College/West LA College, and School of International Business, California International University, USA Abstract This paper describes a new numerical method for the numerical solution of eigenvalues with the largest real part of essentially positive matrices. Finally, a numerical discussion is given to derive the required number of mathematical operations of the new method. Comparisons between the new method and several well know ones, such as Power and QR methods, were discussed. The process consists of computing lower and upper bounds which are monotonically approximating the eigenvalue. Keywords: Collatz’s theorem; Perron-Frobernius’ theorem; Background Eigenvalue Let A be an n x n essentially positive matrix. The new method can AMS subject classifications: 15A48; 15A18; 15A99; 65F10 and 65F15 be used to numerically determine the eigenvalue λA with the largest real part and the corresponding positive eigenvector x[A] for essentially Introduction positive matrices. This numerical method is based on previous manuscript [16]. A matrix A=(a ) is an essentially positive matrix if a A variety of numerical methods for finding eigenvalues of non- ij ij negative irreducible matrices have been reported over the last decades, ≥ 0 for all i ≠ j, 1 ≤ i, j ≤ n, and A is irreducible.
    [Show full text]