River: online machine learning in Python River: machine learning for streaming data in Python Jacob Montiel∗
[email protected] AI Institute, University of Waikato, Hamilton, New Zealand Max Halford∗
[email protected] Alan, Paris, France Saulo Martiello Mastelini
[email protected] Institute of Mathematics and Computer Sciences, University of S˜ao Paulo, S˜ao Carlos, Brazil Geoffrey Bolmier
[email protected] Volvo Car Corporation, G¨oteborg, Sweden Raphael Sourty
[email protected] IRIT, Universit´ePaul Sabatier, Toulouse, France Renault, Paris, France Robin Vaysse
[email protected] IRIT, Universit´ePaul Sabatier, Toulouse, France Octogone Lordat, Universit´eJean-Jaures, Toulouse, France Adil Zouitine
[email protected] IRT Saint Exup´ery, Toulouse, France Heitor Murilo Gomes
[email protected] AI Institute, University of Waikato, Hamilton, New Zealand Jesse Read
[email protected] LIX, Ecole´ Polytechnique, Institut Polytechnique de Paris, Palaiseau, France Talel Abdessalem
[email protected] LTCI, T´el´ecom Paris, Institut Polytechnique de Paris, Palaiseau, France Albert Bifet
[email protected] AI Institute, University of Waikato, Hamilton, New Zealand LTCI, T´el´ecom Paris, Institut Polytechnique de Paris, Palaiseau, France Editor: TBD arXiv:2012.04740v1 [cs.LG] 8 Dec 2020 Abstract River is a machine learning library for dynamic data streams and continual learning. It provides multiple state-of-the-art learning methods, data generators/transformers, per- formance metrics and evaluators for different stream learning problems. It is the result from the merger of the two most popular packages for stream learning in Python: Creme and scikit-multiflow.