Congenital Contractural Arachnodactyly for This Condition(L)

Total Page:16

File Type:pdf, Size:1020Kb

Congenital Contractural Arachnodactyly for This Condition(L) BRIEF REPORTS zation status of children below 5 years in during diseases among nursing students. defined rural population. Indian Pediatr Indian Pediatr 1990, 27: 361-365. 1985, 22: 421-426. 3. Singh H, Kaur L. Awareness about infant 2. Kapil U, Manocha S, Sood AK. Know- feeding among young lady teachers. ledge of nutritive values of foods and diet Indian Pediatr 1990, 27: 861-863. Congenital Contractural arachnodactyly for this condition(l). CCA Arachnodactyly is characterized by multiple contractures, dolichostenomelia, scoliosis, arachnodactyly and external ear anomalies(l,2). This new syndrome contrasted with Marfan by the absence of eye and heart anomalies(l,2) but with increasing number of cases reported, M.L. Kulkarni occasional association of cardiovascular and C. Suresh Kumar ocular anomalies have been reported in V. Venkataramana patients with CCA(3-5). V.G. George M. Bhagyavathi This paper reports 3 cases of CCA from different sibships and reviews the relevant literature emphasizing points of differentia- tion between CCA and Marfan's syndrome. Case Reports Congenital contractural arachnodactyly The 3 subjects were isolated cases from (CCA) is an autosomal dominant disorder of 3 different sibships and were all products of connective tissue, similar in many respects non-consanguineous marriages. The various to Marfan syndrome. Beals and Hecht in clinical features of the 3 cases studied by us 1972 reviewed their patients carrying the are presented in Table I and Figs. 1-4. diagnosis of Marfans syndrome in literature Discussion and delineated a new syndrome(l). They Congenital contractural arachnodactyly introduced the term congenital contractural is an autosomal dominant connective tissue From the Department of Pediatrics, J.J.M. disorder which has emerged as a separate Medical College, Davangere 577 004, entity from Marfan syndrome. In 1972 Karnataka. Beals and Hecht described two new cases Reprint requests: Prof. M.L Kulkarni, 2372, and identified 12 cases of this disorder from M.C.C. "A" Block, Davangere 577 004, literature including the original patient Karnataka. described by Marfan in 1896(1). Subse- Received for publication: December 21, 1993; quently, many affected families(2,3,6) and Accepted: April 30, 1994 some isolated cases with no other member 82 of the family affected have been this disorder. These contractures are present reported(4,7). The three additional cases at birth and tend to improve spontaneously presented here are all isolated cases. These with age(6). The most frequently involved may represent new mutations. joints are those of the fingers, elbow, knee Our findings in these three cases are and hip. Wrist, ankle and shoulder may also summarized in Table I and compared with be affected(2,6). The motor development of those reported in the literature. Joint these individuals may be delayed because of contractures are the important features of these contractures(2,6,8). 83 The affected individuals tend to be tall have structural heart defects like VSD, with dolichostenomelia and arachnodactyly. ASD, PDA, etc.(6). Mitral valve prolapse Spinal abnormalities such as kyphosis and observed in some of these patients caused scoliosis are common. When present they no significant problems(6). usually are not congenital but develop later In the recent past, two cases of CCA, and progress with age(6). The neck appears one having a structurally defective heart slightly short. The head and face are appa- who later developed great artery dilata- rently normal but there is a tendency for retrognathia. Crumpled ears are commonly tion^) and the other having aortic root dila- present in these individuals. Other ear tation^) have been reported in two separate abnormalities include crumpled antihelix, studies. These reports make the differentia- prominent crura and partial obstruction of tion of CCA from Marfan syndrome much the concha(2,6). more difficult. In the present study, none of the patients had any cardiac anomaly. It was previously believed that CCA in Ocular anomalies like ectopia lentis, contrast to Marfan syndrome is not asso- high myopia, retinal detachment, iritis and ciated with ocular or cardiac abnormali- glaucoma are common in Marfan syndrome ties(l,2). Subsequently various reports and are found in 80% patients(6), while in proved that serious cardiac abnormalities CCA ocular anomalies are extremely rare. can occur in CCA(2,4,5,9). Aortic aneu- Recently a patient with CCA was reported rysm, aortic regurgitation and mitral valve as having bilateral ectopia lentis(5). Other prolapse are the common cardiac anomalies ocular anomalies reported in the literature seen in Marfan syndrome. However, include keratoconus, iridodonesis and individuals with CCA are more likely to deeply set eyes. In our study, one patient 85 BRIEF REPORTS had ocular anomaly, that of deep set eyes. syndrome and Marfan syndrome(6). Reports show that patients with CCA usu- Although it is relatively easy to distinguish ally have normal intelligence(l). Other CCA from most of these conditions, Marfan anomalies associated with CCA that have syndrome has many clinical features in been reported in literature include common(2,6). Table II presents the dif- Klinefelter syndrome, tracheo esophageal ferentiation points(2,6,ll) between these fistula, duodenal atresia and unilateral limb two syndromes. deficiency(6,10). The differentiation between Marfan and Marked heterogeneity exists in the CCA has become still more difficult after a manifestation of CCA(6). The variability of report documenting these two syndromes in expression is a feature of autosomal domi- a same family(12). Until a biochemical nant inheritance. This variability gives means becomes available to more accu- problems in distinguishing CCA from simi- rately identify CCA, Marfan syndrome and lar ones like Achard syndrome, osteogenesis other connective tissue disorders from one imperfecta, homocystinuria, Stickler another making an accurate diagnosis is INDIAN PEDIATRICS VOLUME 32-JANUARY 1995 difficult. However, we hope that the recent 7. Travis RC, Shaw DG. Congenital advances in medical genetics localizing contractural arachnodactyly. Br J Radiol 1985,58:1115-1117. Marfan syndrome to chromosome No. 15, and evidence regarding the role of abnormal 8. Langenskiold A. Congenital contractural fibrillin protein in its pathogenesis will open arachnodactyly. Report of a case and of an new doors in this direction(13,14). operation for knee contracture. J Bone Joint Surg (British) 1985, 67-B: 44-46. REFERENCES 9. Gruber MA, Graham TP, Engle E, Smith 1. Hecht F, Beals RK. "New" syndrome of C. Marfan syndrome with contractural congenital contractural arachnodactyly arachnodactyly and severe mitral regurgi- originally described by Marfan in 1896. tation in a premature infant. J Pediatr Pediatrics 1972, 49: 574-579. 1978, 93: 80-82. 2. Beals RK, Hecht F. Congenital contractural arachnodactyly. A heritable 10. Cole TRP, Hughes HE. Congenital disorder of connective tissue. J Bone Joint contractural arachnodactyly with unila- Surg 1971, 53-A(5): 887-903. teral lower limb deficiency. Am J Med Genet 1992, 44: 72-74. 3. Anderson RA, Koch S, Camerini-Otero RDC. Cardiovascular findings in congeni- 11. Hecht F. Uncommon children and com- tal contractural arachnodacyly: Report of mon care. J Pediatr 1981, 98: 594-595. an affected kindred. Am J Med Gent 1984, 18: 265-271. 12. Bass HN, Sparkes RS, Crandal BF, Marcy SM. Congenital contractural arachno- 4. Macnab AJ, D'orsogna L, Cole DEC, dactyly, keratoconus and probable Marfan Baguley PE, Adderley RJ, Pateson MWH. syndrome in the same pedigree. J Pediatr Cardiac anomalies complicating congeni- 1981, 98: 591-593. tal contractural arachnodactyly. Arch Dis Child 1991, 66: 1143-1146. 13. Kainulainen K, Pulkkinen, L, Savolainen 5. Bawle E, Quigg MH. Ectopia lentis and A, Kaitila I, Peltonen L. Location on chro- aortic root dilatation in congenital mosome 15 of the gene defect causing contractural arachnodactyly. Am J Med Marfan syndrome. N Engl J Med 1990, Genet 1992, 42: 19-21. 323: 935-939. 6. Arroyo MAR, Weaver DD, Beals 14. Hollister DW, Godfrey M, Sakai LY, RK. Congenital contractural arachno- Pyeritz RE. Immunohistologic abnormali- dactyly. Report of four additional families ties of the microfibrillar fiber system in and review of literature. Clin Genet 1985, the Marfan syndrome. N Engl J Med 27: 570-581. 1990, 323: 152-159. 87 .
Recommended publications
  • Marfan Syndrome
    Marfan syndrome Description Marfan syndrome is a disorder that affects the connective tissue in many parts of the body. Connective tissue provides strength and flexibility to structures such as bones, ligaments, muscles, blood vessels, and heart valves. The signs and symptoms of Marfan syndrome vary widely in severity, timing of onset, and rate of progression. Because connective tissue is found throughout the body, Marfan syndrome can affect many systems, often causing abnormalities in the heart, blood vessels, eyes, bones, and joints. The two primary features of Marfan syndrome are vision problems caused by a dislocated lens (ectopia lentis) in one or both eyes and defects in the large blood vessel that distributes blood from the heart to the rest of the body (the aorta). The aorta can weaken and stretch, which may lead to a bulge in the blood vessel wall (an aneurysm). Stretching of the aorta may cause the aortic valve to leak, which can lead to a sudden tearing of the layers in the aorta wall (aortic dissection). Aortic aneurysm and dissection can be life threatening. Many people with Marfan syndrome have additional heart problems including a leak in the valve that connects two of the four chambers of the heart (mitral valve prolapse) or the valve that regulates blood flow from the heart into the aorta (aortic valve regurgitation). Leaks in these valves can cause shortness of breath, fatigue, and an irregular heartbeat felt as skipped or extra beats (palpitations). Individuals with Marfan syndrome are usually tall and slender, have elongated fingers and toes (arachnodactyly), loose joints, and have an arm span that exceeds their body height.
    [Show full text]
  • Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement
    Review Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement Tonmoy Biswas.1 Abstract Genetic mutations are becoming more deleterious day by day. Mutations of Genes named FBN1, AKT1, LMNA result specific protein malfunction that in turn commonly cause Marfan syndrome, Proteus syndrome, and Progeria, respectively. Articles about these conditions have been reviewed in PubMed and Google scholar with a view to finding relevant clinical features. Precise keywords have been used in search for systemic involvement of FBN1, AKT1, and LMNA gene mutations. It has been found that Marfan syndrome, Proteus syndrome, and Progeria commonly affected musculo-skeletal system, cardiovascular system, eye, and nervous system. Not only all of them shared identical systemic involvement, but also caused several very specific anomalies in various parts of the body. In spite of having some individual signs and symptoms, the mutual manifestations were worth mentio- ning. Moreover, all the features of the mutations of all three responsible genes had been co-related and systemically mentioned in this review. There can be some mutual properties of the genes FBN1, AKT1, and LMNA or in their corresponding proteins that result in the same presentations. This study may progress vision of knowledge regarding risk factors, patho-physiology, and management of these conditions, and relation to other mutations. Keywords: Genetic mutation; Marfan syndrome; Proteus syndrome; Progeria; Gene FBN1; Gene AKT1; Gene LMNA; Musculo-skeletal system; Cardiovascular system; Eye; Nervous system (Source: MeSH, NLM). Introduction Records in human mutation databases are increasing day by 5 About the author: Tonmoy The haploid human genome consists of 3 billion nucleotides day.
    [Show full text]
  • Genetic Determinants Underlying Rare Diseases Identified Using Next-Generation Sequencing Technologies
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2018 1:30 PM Genetic determinants underlying rare diseases identified using next-generation sequencing technologies Rosettia Ho The University of Western Ontario Supervisor Hegele, Robert A. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Rosettia Ho 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Medical Genetics Commons Recommended Citation Ho, Rosettia, "Genetic determinants underlying rare diseases identified using next-generation sequencing technologies" (2018). Electronic Thesis and Dissertation Repository. 5497. https://ir.lib.uwo.ca/etd/5497 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Rare disorders affect less than one in 2000 individuals, placing a huge burden on individuals, families and the health care system. Gene discovery is the starting point in understanding the molecular mechanisms underlying these diseases. The advent of next- generation sequencing has accelerated discovery of disease-causing genetic variants and is showing numerous benefits for research and medicine. I describe the application of next-generation sequencing, namely LipidSeq™ ‒ a targeted resequencing panel for the identification of dyslipidemia-associated variants ‒ and whole-exome sequencing, to identify genetic determinants of several rare diseases. Utilization of next-generation sequencing plus associated bioinformatics led to the discovery of disease-associated variants for 71 patients with lipodystrophy, two with early-onset obesity, and families with brachydactyly, cerebral atrophy, microcephaly-ichthyosis, and widow’s peak syndrome.
    [Show full text]
  • Orthopedic-Conditions-Treated.Pdf
    Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture
    [Show full text]
  • Sotos Syndrome
    European Journal of Human Genetics (2007) 15, 264–271 & 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00 www.nature.com/ejhg PRACTICAL GENETICS In association with Sotos syndrome Sotos syndrome is an autosomal dominant condition characterised by a distinctive facial appearance, learning disability and overgrowth resulting in tall stature and macrocephaly. In 2002, Sotos syndrome was shown to be caused by mutations and deletions of NSD1, which encodes a histone methyltransferase implicated in chromatin regulation. More recently, the NSD1 mutational spectrum has been defined, the phenotype of Sotos syndrome clarified and diagnostic and management guidelines developed. Introduction In brief Sotos syndrome was first described in 1964 by Juan Sotos Sotos syndrome is characterised by a distinctive facial and the major diagnostic criteria of a distinctive facial appearance, learning disability and childhood over- appearance, childhood overgrowth and learning disability growth. were established in 1994 by Cole and Hughes.1,2 In 2002, Sotos syndrome is associated with cardiac anomalies, cloning of the breakpoints of a de novo t(5;8)(q35;q24.1) renal anomalies, seizures and/or scoliosis in B25% of translocation in a child with Sotos syndrome led to the cases and a broad variety of additional features occur discovery that Sotos syndrome is caused by haploinsuffi- less frequently. ciency of the Nuclear receptor Set Domain containing NSD1 abnormalities, such as truncating mutations, protein 1 gene, NSD1.3 Subsequently, extensive analyses of missense mutations in functional domains, partial overgrowth cases have shown that intragenic NSD1 muta- gene deletions and 5q35 microdeletions encompass- tions and 5q35 microdeletions encompassing NSD1 cause ing NSD1, are identifiable in the majority (490%) of 490% of Sotos syndrome cases.4–10 In addition, NSD1 Sotos syndrome cases.
    [Show full text]
  • Hypermobility Syndrome
    EDS and TOMORROW • NO financial disclosures • Currently at Cincinnati Children’s Hospital • As of 9/1/12, will be at Lutheran General Hospital in Chicago • Also serve on the Board of Directors of the Ehlers-Danlos National Foundation (all Directors are volunteers) • Ehlers-Danlos syndrome(s) • A group of inherited (genetic) disorders of connective tissue • Named after Edvard Ehlers of Denmark and Henri- Alexandre Danlos of France Villefranche 1997 Berlin 1988 Classical Type Gravis (Type I) Mitis (Type II) Hypermobile Type Hypermobile (Type III) Vascular Type Arterial-ecchymotic (Type IV) Kyphoscoliosis Type Ocular-Scoliotic (Type VI) Arthrochalasia Type Arthrochalasia (Type VIIA, B) Dermatosporaxis Type Dermatosporaxis (Type VIIC ) 2012? • X-Linked EDS (EDS Type V) • Periodontitis type (EDS Type VIII) • Familial Hypermobility Syndrome (EDS Type XI) • Benign Joint Hypermobility Syndrome • Hypermobility Syndrome • Progeroid EDS • Marfanoid habitus with joint laxity • Unspecified Forms • Brittle cornea syndrome • PRDM5 • ZNF469 • Spondylocheiro dysplastic • Musculocontractural/adducted thumb clubfoot/Kosho • D4ST1 deficient EDS • Tenascin-X deficiency EDS Type Genetic Defect Inheritance Classical Type V collagen (60%) Dominant Other? Hypermobile Largely unknown Dominant Vascular Type III collagen Dominant Kyphoscoliosis Lysyl hydroxylase (PLOD1) Recessive Arthrochalasia Type I collagen Dominant Dermatosporaxis ADAMTS2 Recessive Joint Hypermobility 1. Passive dorsiflexion of 5th digit to or beyond 90° 2. Passive flexion of thumbs to the forearm 3. Hyperextension of the elbows beyond 10° 1. >10° in females 2. >0° in males 4. Hyperextension of the knees beyond 10° 1. Some knee laxity is normal 2. Sometimes difficult to understand posture- forward flexion of the hips usually helps 5. Forward flexion of the trunk with knees fully extended, palms resting on floor 1.
    [Show full text]
  • Paradoxical Aortic Stiffening and Subsequent Cardiac Dysfunction in Hutchinson-Gilford Progeria Syndrome
    bioRxiv preprint doi: https://doi.org/10.1101/790477; this version posted October 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Paradoxical Aortic Stiffening and Subsequent Cardiac Dysfunction in Hutchinson‐Gilford Progeria Syndrome S‐I. Murtada1, Y. Kawamura1, A.W. Caulk1, H. Amadzadeh1, N. Mikush2, K. Zimmerman3, D. Kavanagh3, D. Weiss1, M. Latorre1, Z.W. Zhang4, G.S. Shadel5, D.T. Braddock3, J.D. Humphrey1,6 1Department of Biomedical Engineering Yale University, New Haven, CT, USA 2Translational Research Imaging Center, 3Department of Pathology, 4Section of Cardiovascular Medicine, and 6Vascular Biology and Therapeutics Program Yale School of Medicine, New Haven, CT, USA 5Molecular and Cellular Biology Salk Institute for Biological Studies, La Jolla, CA, USA Address for Correspondence: J.D. Humphrey, Ph.D. Department of Biomedical Engineering Yale University, New Haven, CT 06520 USA +1‐203‐432‐6428 [email protected] Running Title: Aortic Stiffening in late‐stage Progeria Keywords: progeria, aortic stiffness, pulse wave velocity, diastolic dysfunction, allometric scaling, aging 1 bioRxiv preprint doi: https://doi.org/10.1101/790477; this version posted October 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Hutchinson‐Gilford Progeria Syndrome (HGPS) is an ultra‐rare disorder with devastating sequelae resulting in early death, presently believed to stem primarily from heart failure secondary to central arterial stiffening. We analyze novel longitudinal cardiovascular data from a mouse model of HGPS (LmnaG609G/G609G) using allometric scaling and advanced computational modelling and show that a late‐stage increase in pulse wave velocity, with associated diastolic dysfunction but preserved systolic function, emerges with a loss of aortic function, independent of sex.
    [Show full text]
  • Cardiomyopathy in Patients with Marfan Syndrome and Marfanoid Habitus
    ORIGINAL ARTICLE Cardiomyopathy in patients with Marfan syndrome and marfanoid habitus Ekaterina Luneva MD, PhD1, Eduard Malev MD, PhD1,2, Alexandra Korshunova MD1,2, Svetlana Reeva MD PhD1,2, Eugeniy Timofeev MD PhD1,2 and Eduard Zemtsovsky Prof MD PhD1,2 Lunev E, Malev E, Korshunova A, et al. Cardiomyopathy in patients with worsening was detected in MS group comparing to control group. In marfanoid Marfan syndrome and marfanoid habitus. Curr Res Cardiol 2017;4(1): 9-13. habitus subjects, we found significant decrease of the circumferential strain in the interventricular septum and inferior wall. transforming growth factor-β1 OBJECTIVES: The term “Marfan cardiomyopathy” is used to indicate and -β2 serum levels were elevated in patients with Marfan syndrome. changes in left ventricular function in the absence of significant valvular Elevation of transforming growth factor-β1 was statistically nonsignificant pathology in Marfan syndrome. It is still unknown if there are any changes in unlike to transforming growth factor-β2 in the marfanoid habitus group. cardiac function in patients with similar connective tissue abnormality such Negative correlations between the serum level of transforming growth as marfanoid habitus. factor-β2 and systolic radial strain in the marfanoid habitus group also have been found. METHODS: In the study were included 98 persons - 8 patients with Marfan syndrome, 24 with marfanoid habitus and 66 healthy subjects. CONCLUSION: Worsening of regional myocardial deformation may be Echocardiography was performed to all patients. Speckle tracking the first sign of deterioration of the left ventricular systolic function and the echocardiography was used to assess the left ventricular deformation indices.
    [Show full text]
  • Soonerstart Automatic Qualifying Syndromes and Conditions
    SoonerStart Automatic Qualifying Syndromes and Conditions - Appendix O Abetalipoproteinemia Acanthocytosis (see Abetalipoproteinemia) Accutane, Fetal Effects of (see Fetal Retinoid Syndrome) Acidemia, 2-Oxoglutaric Acidemia, Glutaric I Acidemia, Isovaleric Acidemia, Methylmalonic Acidemia, Propionic Aciduria, 3-Methylglutaconic Type II Aciduria, Argininosuccinic Acoustic-Cervico-Oculo Syndrome (see Cervico-Oculo-Acoustic Syndrome) Acrocephalopolysyndactyly Type II Acrocephalosyndactyly Type I Acrodysostosis Acrofacial Dysostosis, Nager Type Adams-Oliver Syndrome (see Limb and Scalp Defects, Adams-Oliver Type) Adrenoleukodystrophy, Neonatal (see Cerebro-Hepato-Renal Syndrome) Aglossia Congenita (see Hypoglossia-Hypodactylia) Aicardi Syndrome AIDS Infection (see Fetal Acquired Immune Deficiency Syndrome) Alaninuria (see Pyruvate Dehydrogenase Deficiency) Albers-Schonberg Disease (see Osteopetrosis, Malignant Recessive) Albinism, Ocular (includes Autosomal Recessive Type) Albinism, Oculocutaneous, Brown Type (Type IV) Albinism, Oculocutaneous, Tyrosinase Negative (Type IA) Albinism, Oculocutaneous, Tyrosinase Positive (Type II) Albinism, Oculocutaneous, Yellow Mutant (Type IB) Albinism-Black Locks-Deafness Albright Hereditary Osteodystrophy (see Parathyroid Hormone Resistance) Alexander Disease Alopecia - Mental Retardation Alpers Disease Alpha 1,4 - Glucosidase Deficiency (see Glycogenosis, Type IIA) Alpha-L-Fucosidase Deficiency (see Fucosidosis) Alport Syndrome (see Nephritis-Deafness, Hereditary Type) Amaurosis (see Blindness) Amaurosis
    [Show full text]
  • Scoliosis, Blindness and Arachnodactyly in a Large Turkish Family: Is It a New Syndrome? Genetic Counseling, 19(3):319-330
    Dundar, M; Erkilic, K; Argun, M; Caglayan, AO; Comeglio, P; Koseoglu, E; Matyas, G; Child, AH (2008). Scoliosis, blindness and arachnodactyly in a large Turkish family: Is it a new syndrome? Genetic Counseling, 19(3):319-330. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Genetic Counseling 2008, 19(3):319-330. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Scoliosis, blindness and arachnodactyly in a large Turkish family: Is it a new syndrome? Dundar, M; Erkilic, K; Argun, M; Caglayan, AO; Comeglio, P; Koseoglu, E; Matyas, G; Child, AH Dundar, M; Erkilic, K; Argun, M; Caglayan, AO; Comeglio, P; Koseoglu, E; Matyas, G; Child, AH (2008). Scoliosis, blindness and arachnodactyly in a large Turkish family: Is it a new syndrome? Genetic Counseling, 19(3):319-330. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Genetic Counseling 2008, 19(3):319-330. Scoliosis, blindness and arachnodactyly in a large Turkish family: Is it a new syndrome? Abstract In this report we have described an affected sib in a large Turkish family who appears to have a new distinct dominantly-inherited blindness, scoliosis and arachnodactyly syndrome. The combination of clinical abnormalities in these patients did not initially suggest Marfan syndrome or other connective tissue disorders associated with ectopia lentis. The proband was a 16-year-old boy who was referred to our clinics for scoliosis.
    [Show full text]
  • A Consensus Statement on the Surgical Treatment of Charcot
    FAIXXX10.1177/1071100720922220Foot & Ankle InternationalPfeffer et al 922220review-article2020 Current Concepts Review Foot & Ankle International® 2020, Vol. 41(7) 870 –880 A Consensus Statement on the Surgical © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions Treatment of Charcot-Marie-Tooth Disease DOI:https://doi.org/10.1177/1071100720922220 10.1177/1071100720922220 journals.sagepub.com/home/fai Glenn B. Pfeffer, MD1, Tyler Gonzalez, MD, MBA2 , James Brodsky, MD3, John Campbell, MD4, Chris Coetzee, MD5 , Stephen Conti, MD6, Greg Guyton, MD7, David N. Herrmann, MBBCh8, Kenneth Hunt, MD9, Jeffrey Johnson, MD10 , William McGarvey, MD11, Michael Pinzur, MD12 , Steve Raikin, MD13, Bruce Sangeorzan, MD14, Alastair Younger, MD15, Max Michalski, MD1 , Tonya An, MD1 , and Naudereh Noori, MD1 Abstract Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor-sensory neuropathy that is often associated with a cavovarus foot deformity. Limited evidence exists for the orthopedic management of these patients. Our goal was to develop consensus guidelines based upon the clinical experiences and practices of an expert group of foot and ankle surgeons. Methods: Thirteen experienced, board-certified orthopedic foot and ankle surgeons and a neurologist specializing in CMT disease convened at a 1-day meeting. The group discussed clinical and surgical considerations based upon existing literature and individual experience. After extensive debate, conclusion statements were deemed “consensus” if 85% of the group were in agreement and “unanimous” if 100% were in support. Conclusions: The group defined consensus terminology, agreed upon standardized templates for history and physical examination, and recommended a comprehensive approach to surgery. Early in the course of the disease, an orthopedic foot and ankle surgeon should be part of the care team.
    [Show full text]
  • Familial Thoracic Aortic Aneurysms
    REVIEW CURRENT OPINION Familial thoracic aortic aneurysms Guillaume Jondeaua and Catherine Boileaub Purpose of review A lot of new data have been obtained in familial thoracic aortic aneurysms, including description of new entities and better understanding of pathophysiology. The aim of this review is to put them in perspective. Recent findings The new data have been collected, put together, and allowed a new classification scheme to be proposed by the Montalcino Aortic Consortium on the basis of the role of proteins coded by the culprit gene (either protein of the extracellular matrix or protein of the transforming growth factor-beta pathway, or protein of the contractile apparatus of the smooth muscle cell). These groups of diseases include aortic aneurysm, but the extent of extra-aortic vascular risk and the presence of extra-aortic (skeletal, ophthalmologic, neurological, or immunological) features vary according to the gene involved. This understanding also sheds light on the therapeutic benefits that can be foreseen for new molecules, or old molecules used in a newer way. Summary Classification of familial forms of thoracic aortic aneurysm should allow a better understanding of these diseases and therefore standardization of initial evaluation of the patients (vascular evaluation limited or not to the aorta, and extravascular evaluation, including or not skeleton, eyes, neurology, digestive tract, and immunological diseases) and individualization of therapy (adapted to both the genotype and the phenotype). Keywords aorta, Marfan, transforming growth factor-beta INTRODUCTION to be very low in patients with Marfan syndrome who undergo regular follow-up, take beta-blockers, Familial thoracic aortic aneurysms (TAA) represent & around 20% of all TAA.
    [Show full text]