Van Der Woude Syndrome: a Case Report and Review

Total Page:16

File Type:pdf, Size:1020Kb

Van Der Woude Syndrome: a Case Report and Review CASE REPORT Indonesia Journal of Biomedical Science (IJBS) 2020, Volume 14, Number 2: 118-121 P-ISSN.2085-4773, E-ISSN.2302-2906 Van der woude syndrome: A case report and review Nyoman Ayu Anggayanti1*, Endang Sjamsudin2, Farah Asnely Putri2 ABSTRACT Introduction: The prevalent autosomal disorder, with or technique and simple excision were conducted combined with without cleft palate and lip, is Van der Woude Syndrome (VWS). a breakthrough procedure under general anesthesia to correct The condition has been known for its lower lip pits. Interferon bilateral cleft lips. The patient showed better clinical condition after Regulatory Factor 6 (IRF6) gene mutations are causing a range of the seventh-day post-surgery without infection sign, and bilateral cases of VWS. The furrows caused an accumulation of mucous and cleft in lower lip pit closed in a month after surgery. felt esthetic pain during meals and crying. Conclusion: VWS is generally not known and not always Purpose: To determine VWS causes, prevalence, treatment, diagnosed. It is peculiar that the cleft palate and lip phenomenon symptoms, and diagnosis. is routinely integrated into the same pedigree. The patient with Case report: A six-month-old baby was with lip pits, a bilateral a lip pit can be thoroughly examined, for example, by revealing cleft lip and palate since birth. The extraoral exam showed bilateral the secret shape of the cleft. In this case, the surgical repair was pit swellings with dome form on the lower vermilion boundary handled simultaneously to both functional and esthetic aspects to laterally to the midline. Simultaneous operations with the Nordhoff achieve satisfying results. Keywords: van der woude syndrome, cleft lip and palate, lip pits Cite this Article: Anggayanti, N.A., Sjamsudin, E., Putri, F.A. 2020.Van der woude syndrome: A case report and review. IJBS 14(2): 118-121. DOI: 10.15562/ijbs.v14i2.269 1Departement of Oral and INTRODUCTION VWS has high penetration and variable Maxillofacial Surgery, School of expressiveness from 89% to 99%. Live births from Dentistry, Faculty of Medicine, The Van der Woude Syndrome (VWS) is a sinus 1:35 thousand to 1:100 thousand and 1 to 2 percent. Universitas Udayana, Denpasar, disorder that included lower lip, a flaccid lip and Seventy percent of lip wells are associated with the Indonesia 1 palate. In 1954, Van der Woude described this palate and even lip.4 Thirty percent have minimum 2Departement of Oral and function, investigated it extensively, developed a Maxillofacial Surgery, Faculty of results like isolated lip wells and hypodontia. connection between the lower lip or sinus, and Most cases of VWS are due to IRF6 mutations. In Dentistry, Universitas Padjadjaran, introduced a new clinical perspective to the heritage Bandung, Indonesia 1 the 1q32-41 field, VWS was related to 500 to 800 mode. The lip-pit typically has salivary glands, kilobases deletion.5 These cases are unusual. The which drain into the lip-pit and result in salivary VWS case and its literature, we are interested in flow. The patient lip pits can associate with patient covering below. dizziness symptoms, velopharyngeal abnormalities 2 or genital or cardiovascular problems. They are CASE REPORT typically positioned on the lower vermilion portion on either side of the midline with symmetrical A six-month male infant with lip pits, cleft palate, and and bilateral. They may also be asymmetrical bilateral cleft lip came to the Cleft Center University *Corresponding author: on a unilateral, medial, or bilateral. One lesion is of Padjadjaran Bandung. Parents complained about Nyoman Ayu Anggayanti; 2 Departement of Oral and typically used as an incomplete syndrome. Lip pits cleft lip, palate, and drooling issues since childbirth. Maxillofacial Surgery, School of are oval shape, transverse, and even sulcious. Cross- Uncomplicated deliveries and normal births have Dentistry, Faculty of Medicine, cut mucosa and conical (nipple-like) elevations been confirmed, and there has never been a history Universitas Udayana, Denpasar, are considered lower lip microforms. The sinuses of drug and radiation exposure during pregnancy. Indonesia; penetrate to a depth of 1-25 mm in the orbicular A general physical condition test was found [email protected] muscle and interact with the small salival glands with 7 kg body weight within the normal range. beneath them. They are mostly asymptomatic, but We observed bilateral dome-shaped swellings with Received: 2020-09-21 watery or salivary secretions are intermittently or pitches on the midline on the lower vermilion Accepted: 2020-11-23 continuously drained.3 boundary with a complete cleft palate and lip had Published: 2020-12-01 been diagnosed. (Figure 1). 118 Published byOpen DiscoverSys access: http://ijbs-udayana.org | IJBS 2020; 14(2): 118-121/ and | d http://www.ojs.unud.ac.id/oi: 10.15562/ijbs.v14i2.269 CASE REPORT the diagram’s completion, lidocaine 2 percent plus epinephrine 1:200,000 is infiltrated into the lip clamp has been inserted during the procedure to decrease bleeding. The incisions and the dissections are rendered as usual by other methods according to the mark, and the repair is closed by three layers: first, the mucosa, muscles, and skin (Section 2B). The procedure must be performed simultaneously to correct the bilateral cleft lip with lower lip pits of the infant to achieve appropriate findings both in functional and esthetic terms. Figure 1. Bilateral cleft lip and lower pits lip preoperative picture Following surgery, the patient has treated with amoxicillin 100mg. After the treatment, his lip looked like mild swelling oedematous, no bleeding, no fever. Patients use a spoon for drinking milk. Patients are permitted to return, and the treatment is continued. Polyclinic monitoring is promoted in patients. After seven days of surgery, a suture has been removed, no signs of infection exist (Figure 3A), and the bilateral cleft, lower lip pit were closed, and a follow-up has been closed for a month after surgery. (Figure 3B). (A) (B) Figure 2. During operation (A). The lips with marking side, (B). Patient’s DISCUSSION condition after surgery Van der Woude was the firstperson companion to combine lower lip troughs with cleft palate and lip which introduce a newly clinical perspective, thus defining the heredity mode as a whole. Bocian et al. documented a lip pit patient in 1887 and 1q32-q41 deletion. Murray et al. followed by a link between VWS and the markers in the same area. Bocian et al. found in families with VWS in 1q32-q41 microdeletions.6 The second locus of VWS was (A) (B) located in 1p34 chromosome. The IRF6 mutation in patients with VWS has recently been identified. Figure 3. (A). The suture was extracted seven days after surgery (B). A month VWS cases are usually related to chromosome after the operation 1q32-q41 (VWS 1), and chromosome 1p34 for the second locus (VWS 2). IRF6 are coded by the gene that located in chromosome 1q32-q41. IRF Treatment for bilateral cleft lip correction and are a family of transcription factors. Nine IRFs in simple excision with general anesthesia is envisaged. humans are registered. IRF6 is still uncertain for its The infant made eligible for preoperative and role, meanwhile the other IRFs has the known role.6 perioperative care with a laboratory test, a thorax The mandibular arch and the lower lip sulcus X-ray, and cardiopulmonary in the Department of lateral fusion occurs at 5.5 weeks during normal Pediatrics and the Department of Anesthesia. Her development, while the maxillary and nasofrontal general anesthesia treatments did not include a fusions take place at a period of six weeks. A joint contraindication, and the patient’s parents signed event can, at the same time, interrupt fusion at informed consent. either location. It is potentially that lip pit and cleft The Nordhoff technique and an exact cut lip and palate are closely related.5 Parents frequently combination with a split-lip advancing approach guested these pits due to eruption of maxillary were used to correct the bilateral cleft lip under incisors, although the pits have been present since general anesthesia surgically. The patient was the beginning, months before the maxilla incisors’ aseptic and antiseptic and had a supine role under eruption. As standard, our patients’ depressions general anesthesia. Marking for this cleft lip repair were thought to have formed due to tooth pressure, is the same as the methylene blue mark (Figure and there was no any other evaluation in our 2A) and follows the same principles. Following patient. Therefore, any other lip-pit anomalies need Published by DiscoverSys | IJBS 2020; 14(2): 118-121 | doi: 10.15562/ijbs.v14i2.269 119 CASE REPORT diameter of the lower lip fistulae is more than the clinical trials initially predicted (average 15.7 mm). This depth means that the orbicularis oris muscle is similar to its aesthetic effects if not well remedied. This must be taken into account before surgery.7 Mutaf et al. explains the classic elliptical cutting and split-leap technique, includes two methods used for removal of fistula. We used elliptical simple for fistula excision and had good results (Figure 4). CONCLUSION Doctors should be aware for congenital condition of the variable lip pit, which has clinical variables of VWS, and this disorder is hard to identify.6 While lip pits show that the VWS is present as the exclusive clinical finding, the negative correlation with previously recorded chromosome 1q32-Q41 deletion and the lack of a mutation of IRF 6 in our case indicates that the phenotypic expression of the Figure 4. Drawings of operational strategies available in VWS to treat lower 2nd modifier gene may be affected. Genetic therapy is recommended for a potential pregnancy because lip pits.
Recommended publications
  • Novel Heterozygous Pathogenic Variants in CHUK in a Patient With
    Cadieux-Dion et al. BMC Medical Genetics (2018) 19:41 https://doi.org/10.1186/s12881-018-0556-2 CASE REPORT Open Access Novel heterozygous pathogenic variants in CHUK in a patient with AEC-like phenotype, immune deficiencies and 1q21.1 microdeletion syndrome: a case report Maxime Cadieux-Dion1* , Nicole P. Safina2,6,7, Kendra Engleman2, Carol Saunders1,3,7, Elena Repnikova1,2, Nikita Raje4, Kristi Canty5, Emily Farrow1,6, Neil Miller1, Lee Zellmer3 and Isabelle Thiffault1,2,3 Abstract Background: Ectodermal dysplasias (ED) are a group of diseases that affects the development or function of the teeth, hair, nails and exocrine and sebaceous glands. One type of ED, ankyloblepharon-ectodermal defects-cleft lip/ palate syndrome (AEC or Hay-Wells syndrome), is an autosomal dominant disease characterized by the presence of skin erosions affecting the palms, soles and scalp. Other clinical manifestations include ankyloblepharon filiforme adnatum, cleft lip, cleft palate, craniofacial abnormalities and ectodermal defects such as sparse wiry hair, nail changes, dental changes, and subjective hypohydrosis. Case presentation: We describe a patient presenting clinical features reminiscent of AEC syndrome in addition to recurrent infections suggestive of immune deficiency. Genetic testing for TP63, IRF6 and RIPK4 was negative. Microarray analysis revealed a 2 MB deletion on chromosome 1 (1q21.1q21.2). Clinical exome sequencing uncovered compound heterozygous variants in CHUK; a maternally-inherited frameshift variant (c.1365del, p.Arg457Aspfs*6) and a de novo missense variant (c.1388C > A, p.Thr463Lys) on the paternal allele. Conclusions: To our knowledge, this is the fourth family reported with CHUK-deficiency and the second patient with immune abnormalities.
    [Show full text]
  • Screening for Obstructive Sleep Apnea in Children with Syndromic Cleft Lip And/Or Palate* Jason Silvestre, Youssef Tahiri, J
    Journal of Plastic, Reconstructive & Aesthetic Surgery (2014) 67, 1475e1480 Screening for obstructive sleep apnea in children with syndromic cleft lip and/or palate* Jason Silvestre, Youssef Tahiri, J. Thomas Paliga, Jesse A. Taylor* Division of Plastic Surgery, The Perelman School of Medicine at the University of Pennsylvania, The Children’s Hospital of Philadelphia, USA Received 20 December 2013; accepted 22 July 2014 KEYWORDS Summary Background: Craniofacial malformations including cleft lip and/or palate (CL/P) Obstructive sleep increase risk for obstructive sleep apnea (OSA). While 30% of CL/P occurs in the context of un- apnea; derlying genetic syndromes, few studies have investigated the prevalence of OSA in this high- Pediatric; risk group. This study aims to determine the incidence and risk factors of positive screening for Questionnaire; OSA in this complex patient population. Screening; Methods: The Pediatric Sleep Questionnaire (PSQ) was prospectively administered to all pa- Cleft lip and palate tients cared for by the cleft lip and palate clinic at the Children’s Hospital of Philadelphia be- tween January 2011 and August 2013. The PSQ is a 22-item, validated screening tool for OSA with a sensitivity and specificity of 0.83 and 0.87 in detecting an apnea-hypopnea index (AHI) >5/hour in healthy children. The Fisher exact and Chi-square tests were used for pur- poses of comparison. Results: 178 patients with syndromic CL/P completed the PSQ. Mean cohort age was 8.1 Æ 4.4 years. Patients were predominately female (53.9%), Caucasian (78.1%), and had Veau Class II cleft (50.6%).
    [Show full text]
  • Bartsocas-Papas Syndrome: a Lethal Multiple Pterygium Syndrome Neonatology Section
    DOI: 10.7860/JCDR/2021/45819.14401 Case Report Bartsocas-Papas Syndrome: A Lethal Multiple Pterygium Syndrome Neonatology Section SUMITA MEHTA1, EKTA KALE2, TARUN KUMAR RAVI3, ANKITA MANN4, PRATIBHA NANDA5 ABSTRACT Bartsocas-Papas Syndrome (BPS) is a very rare autosomal recessive syndrome characterised by marked craniofacial deformities, multiple pterygia of various joints, limb and genital abnormalities. It is mostly associated with mutation in the gene encoding Receptor Interacting Serine/Threonine Kinase 4 (RIPK4) required for keratinocyte differentiation. The syndrome is generally lethal and majority of babies die in-utero or in the early neonatal period. This is a report about a neonate born with characteristic clinical features of BPS including severe craniofacial and ophthalmic abnormalities, limb deformities and multiple pterygia at popliteal, axillary and inguinal region. The baby had respiratory distress at birth and was managed conservatively on Continuous Positive Airway Pressure (CPAP)/Oxygen hood and injectable antibiotics for two weeks and then referred for further work-up to a tertiary hospital. The parents took the baby home against the advice of the treating doctors and she subsequently died after 10 days. BPS is associated with high mortality and so all efforts should be directed towards diagnosing it early antenatally when termination of pregnancy is a viable option. This is possible by having a high index of suspicion in couples with consanguineous marriages or with a positive family history. Keywords: Craniofacial abnormalities, Genitals, Joints, Limb, Mutation, Popliteal pterygium syndrome CASE REPORT A 27-year-old primigravida, with previous two antenatal visits, had a breech vaginal delivery at 37 weeks of gestation.
    [Show full text]
  • 2019 Literature Review
    2019 ANNUAL SEMINAR CHARLESTON, SC Special Care Advocates in Dentistry 2019 Lit. Review (SAID’s Search of Dental Literature Published in Calendar Year 2018*) Compiled by: Dr. Mannie Levi Dr. Douglas Veazey Special Acknowledgement to Janina Kaldan, MLS, AHIP of the Morristown Medical Center library for computer support and literature searches. Recent journal articles related to oral health care for people with mental and physical disabilities. Search Program = PubMed Database = Medline Journal Subset = Dental Publication Timeframe = Calendar Year 2016* Language = English SAID Search-Term Results = 1539 Initial Selection Result = 503 articles Final Selection Result =132 articles SAID Search-Terms Employed: 1. Intellectual disability 21. Protective devices 2. Mental retardation 22. Moderate sedation 3. Mental deficiency 23. Conscious sedation 4. Mental disorders 24. Analgesia 5. Mental health 25. Anesthesia 6. Mental illness 26. Dental anxiety 7. Dental care for disabled 27. Nitrous oxide 8. Dental care for chronically ill 28. Gingival hyperplasia 9. Special Needs Dentistry 29. Gingival hypertrophy 10. Disabled 30. Autism 11. Behavior management 31. Silver Diamine Fluoride 12. Behavior modification 32. Bruxism 13. Behavior therapy 33. Deglutition disorders 14. Cognitive therapy 34. Community dentistry 15. Down syndrome 35. Access to Dental Care 16. Cerebral palsy 36. Gagging 17. Epilepsy 37. Substance abuse 18. Enteral nutrition 38. Syndromes 19. Physical restraint 39. Tooth brushing 20. Immobilization 40. Pharmaceutical preparations Program: EndNote X3 used to organize search and provide abstract. Copyright 2009 Thomson Reuters, Version X3 for Windows. *NOTE: The American Dental Association is responsible for entering journal articles into the National Library of Medicine database; however, some articles are not entered in a timely manner.
    [Show full text]
  • Van Der Woude Syndrome
    Journal of Dental Health Oral Disorders & Therapy Mini Review Open Access Van Der Woude syndrome Introduction Volume 7 Issue 2 - 2017 The Van der Woude syndrome is an autosomal dominant syndrome Ambarkova Vesna and was originally described by Van der Woude in 1954, as a dominant Department of Paediatric and Preventive Dentistry, University inheritance pattern with variable penetrance and expression, even St. Cyril and Methodius, Macedonia within families. Even monozygotic twins may be affected to markedly different degrees.1 Correspondence: Vesna Ambarkova, Department of Paediatric and Preventive Dentistry, Faculty of Dental Medicine, University Etiology St. Cyril and Methodius, Mother Theresa 17 University Dental Clinic Center Sv. Pantelejmon Skopje 1000, Macedonia, Tel The syndrome has been linked to a deletion in chromosome 38970686333, Email 1q32-q41, but a second chromosomal locus at 1p34 has also been Received: April 12, 2017 | Published: May 02, 2017 identified. The exact mechanism of the interferon regulatory factor 6 (IRF6) gene mutations on craniofacial development is uncertain. Chromosomal mutations that cause van der Woude syndrome and are associated with IRF-6 gene mutations. A potential modifying gene has been identified at 17p11.2-p11.1. Los et al stated that most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome I.2 They describe a unique case mother presented with a classic Van der Woude Syndrome, while the of the two syndromes occurring concurrently though apparently maternal grandfather had Van der Woude Syndrome as well as minor independently in a girl with Van der Woude syndrome and pituitary signs of popliteal pterygium syndrome.
    [Show full text]
  • Van Der Woude Syndrome and Implications in Dental Medicine Flavia Gagliardi and Ines Lopes Cardoso*
    Research Article iMedPub Journals Journal of Dental and Craniofacial Research 2018 www.imedpub.com Vol.3 No.1:1 ISSN 2576-392X DOI: 10.21767/2576-392X.100017 Van der Woude Syndrome and Implications in Dental Medicine Flavia Gagliardi and Ines Lopes Cardoso* Faculty of Health Sciences, University of Fernando Pessoa, Rua Carlos da Maia, Portugal *Corresponding author: Ines Lopes Cardoso, Faculty of Health Sciences, University of Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal, Tel: 351 225071300; E-mail: [email protected] Rec date: January 18, 2018; Acc date: January 24, 2018; Pub date: January 29, 2018 Citation: Gagliardi F, Cardoso IL (2018) Van der Woude Syndrome and Implications in Dental Medicine. J Dent Craniofac Res Vol.3 No.1:1. determined that this pathology has a complex heritage, with a single gene involved, with high penetrance but variable Abstract expressivity. The variety of symptoms can go from fistulas of the lower lip with lip and palate cleft to invisible anomalies [2]. There are many types of genetic anomalies that affect the development of orofacial structures. Van der Woude It is a rare congenital malformation with an autossomic syndrome (VWS), also known as cleft palate, lip pits or lip dominant transmission consisting of 2% of all cases of cleft lip pit papilla syndrome, is a rare autosomal dominant and palate, with an incidence of 1 in 35,000-100,000 [3-5]. condition being considered the most common cleft Lip pits were the most common manifestation present in syndrome. It is believed to occur in 1 in 35,000 to 1 in affected individuals, occurring in 88% of patients [6,7].
    [Show full text]
  • NEONATOLOGY TODAY Loma Linda Publishing Company © 2006-2018 by Neonatology Today a Delaware “Not for Profit” 501(C) 3 Corporation
    NEONATOLOGY Peer Reviewed Research, News and Information TODAY in Neonatal and Perinatal Medicine Volume 13 / Issue 7 | July 2018 Many Hospitals Still Employ Non-Evidence Based Awards and Abstracts from the Perinatal Advisory Practices, Including Auscultation, Creating Serious Council, Leadership, Advocacy, and Consultation Patient Safety Risk in Nasogastric Tube Placement (PAC-LAC) Annual Meeting and Verification Aida Simonian, MSN, RNC-NIC, SCM, SRN Beth Lyman MSN, RN, CNSC, FASPEN, Christine Peyton MS, Brian .............................................................................................................Page 38 Lane, MD. Perinatal/Neonatal Medicolegal Forum ..............................................................................................................Page 3 Gilbert Martin, MD and Jonathan Fanaroff, MD, JD The Story of a Nasogastric Tube Gone Wrong .............................................................................................................Page 42 Deahna Visscher, Patient Advocate Feeding Options Exist: So Why Aren’t We .............................................................................................................Page 12 Discussing Them at Bedside? National Black Nurses Association Announces Deb Discenza Human Donor Milk Resolution .............................................................................................................Page 43 National Black Nurses Association The Genetics Corner: A Consultation for Orofacial .............................................................................................................Page
    [Show full text]
  • Abdullah Thesis
    SMAD2 OVEREXPRESSION RESCUES THE TGF-Β3 NULL MUTANT MICE CLEFT PALATE BY INCREASED APOPTOSIS by Abdullah M AlMegbel B.D.S., King Saud University, 2003 AEGD, University of Southern California, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Craniofacial Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2016 © Abdullah M AlMegbel, 2016 Abstract Objectives: Cleft lip/palate is a common birth defect. It occurs in about one in 700 live births worldwide. In non-syndromic cleft lip/palate, a linkage to TGF-β3 has been shown. Signaling of TGF-β3 is mediated in the cell through the Smad2 protein. During secondary palate fusion TGF- β3 signaling leads to the disappearance of the epithelial midline seam and the confluence of the palatal mesenchyme. TGF-β3 null mice are born with a cleft in the secondary palate, a phenotype that has been rescued by targeted overexpression of Smad2 in the MEE. The goal of this research was to understand the mechanism of palatal fusion in the rescue mice. Methods: The heads of embryos of four different mice models (wild-type, rescue, K14-Smad2 overexpression and TGF-β3 null) were collected at gestational age E14.5 genotyped, fixed and embedded in paraffin. Serial sections were studied for detection of apoptosis and epithelial mesenchymal transition using immunofluorescence. Images were captured with confocal laser microscopy. Results: TGF-β3 null mice developed a cleft in the secondary palate while mice that had both the TGF-β3 null and overexpression K14-Smad2 genotypes had fusion of the secondary palate.
    [Show full text]
  • Genetic Heterogeneity in Van Der Woude Syndrome: Identification of NOL4 and IRF6 Haplotype from the Noncoding Region As Candidates in Two Families
    RESEARCH ARTICLE Genetic heterogeneity in Van der Woude syndrome: Identification of NOL4 and IRF6 haplotype from the noncoding region as candidates in two families Priyanka Kumari1, Akhtar Ali2, Subodh Kumar Singh3, Amit Chaurasia4, Rajiva Raman1 1Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India 2Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi- 221005, Uttar Pradesh, India 3G. S. Memorial Plastic Surgery Hospital and Trauma Centre, Varanasi-221010, Uttar Pradesh, India 4Premas Life Sciences, Pvt. Ltd., New Delhi, India Running Title: Non coding region variants are involved in VWS Address for correspondence: Prof. Rajiva Raman, Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India. e-mail: [email protected], [email protected] Abstract Van der Woude Syndrome (VWS) shows autosomal dominant pattern of inheritance with 2 known candidate genes, IRF6 and GRHL3. Employing genome wide linkage analyses on 2 VWS affected families, we report co-segregation of an intronic rare variant in NOL4 in one family, and a haplotype consisting of 3 variants in non coding region of IRF6 (introns1, 8 and 3’UTR) in the other family. Using mouse as well as human embryos as model, we demonstrate expression of NOL4 in the lip and palate primordia during development. Luciferase as well as miRNA-transfection assays show decline in the expression of mutant NOL4 construct due to creation of a binding site for hsa-miR-4796-5p. In family 2, the non-coding region IRF6 haplotype turns out to be the candidate possibly by diminishing its IRF6 expression to half of its normal activity.
    [Show full text]
  • An Etiologic Regulatory Mutation in IRF6 with Loss- and Gain-Of-Function Effects
    Human Molecular Genetics, 2014, Vol. 23, No. 10 2711–2720 doi:10.1093/hmg/ddt664 Advance Access published on January 16, 2014 An etiologic regulatory mutation in IRF6 with loss- and gain-of-function effects Walid D. Fakhouri1,{, Fedik Rahimov4,{, Catia Attanasio5, Evelyn N. Kouwenhoven6, Renata L. Ferreira De Lima4, Temis Maria Felix8, Larissa Nitschke1, David Huver1, Julie Barrons1, Youssef A. Kousa2, Elizabeth Leslie4, Len A. Pennacchio5, Hans Van Bokhoven6,7, Axel Visel5, Huiqing Zhou6,9, Jeffrey C. Murray4 and Brian C. Schutte1,3,∗ Downloaded from https://academic.oup.com/hmg/article/23/10/2711/614966 by guest on 05 October 2021 1Microbiology and Molecular Genetics, 2Department of Biochemistry and Molecular Biology and 3Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA 4Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA 5Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences and 7Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands 8Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil 9Faculty of Science, Department of Molecular Developmental Biology, Radboud University Nijmegen, Nijmegen, The Netherlands Received September 25, 2013; Revised December 7, 2013; Accepted December 23, 2013 DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons.
    [Show full text]
  • Epidemiology, Etiology, and Treatment of Isolated Cleft Palate
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 01 March 2016 doi: 10.3389/fphys.2016.00067 Epidemiology, Etiology, and Treatment of Isolated Cleft Palate Madeleine L. Burg 1, Yang Chai 2, Caroline A. Yao 3, 4, William Magee III 3, 4 and Jane C. Figueiredo 5* 1 Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 2 Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA, 3 Division of Plastic and Reconstructive Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 4 Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA, 5 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Isolated cleft palate (CPO) is the rarest form of oral clefting. The incidence of CPO varies substantially by geography from 1.3 to 25.3 per 10,000 live births, with the Edited by: highest rates in British Columbia, Canada and the lowest rates in Nigeria, Africa. Paul Trainor, Stratified by ethnicity/race, the highest rates of CPO are observed in non-Hispanic Stowers Institute for Medical Research, USA Whites and the lowest in Africans; nevertheless, rates of CPO are consistently higher Reviewed by: in females compared to males. Approximately fifty percent of cases born with cleft Keiji Moriyama, palate occur as part of a known genetic syndrome or with another malformation Tokyo Medical and Dental University, Japan (e.g., congenital heart defects) and the other half occur as solitary defects, referred to Daniel Graf, often as non-syndromic clefts.
    [Show full text]
  • Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models
    CHAPTER SEVENTEEN From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models Alice F. Goodwin*,†, Rebecca Kim*,†, Jeffrey O. Bush*,{,},1, Ophir D. Klein*,†,},},1 *Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA †Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA { Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA } Department of Pediatrics, University of California San Francisco, San Francisco, California, USA } Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA 1Corresponding authors: e-mail address: [email protected]; [email protected] Contents 1. Models to Uncover Genetics of Cleft Lip and Palate 460 2. Treacher Collins: Proof of Concept of a Nonsurgical Therapeutic for a Craniofacial Syndrome 467 3. RASopathies: Understanding and Developing Treatment for Syndromes of the RAS Pathway 468 4. Craniosynostosis: Pursuing Genetic and Pharmaceutical Alternatives to Surgical Treatment 473 5. XLHED: Developing Treatment Based on Knowledge Gained from Mouse and Canine Models 477 6. Concluding Thoughts 481 Acknowledgments 481 References 481 Abstract Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treat- ments currently in clinical use address the underlying molecular causes of these disor- ders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes # Current Topics in Developmental Biology, Volume 115 2015 Elsevier Inc.
    [Show full text]