Mcgill Airflow Duct System Design Guide

Total Page:16

File Type:pdf, Size:1020Kb

Mcgill Airflow Duct System Design Guide Duct System Design Duct System Design Guide First Edition ©2003 McGill AirFlow Corporation McGill AirFlow Corporation One Mission Park Groveport, Ohio 43125 Notice: No part of this work may be reproduced or used in any form or by any means — graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems — without the written permission of McGill AirFlow Corporation. The performance data included in this Guide have been obtained from testing programs conducted in flow measurement laboratories and detailed in the reference test reports. The data are reprinted in this manual as a source of information for design engineers. McGill AirFlow Corporation assumes no responsibility for the performance of duct system components installed in the field. McGill AirFlow Corporation is a wholly owned subsidiary of United McGill Corporation. i Duct System Design Table of Contents Introduction ..............................................................................................................................vi Foreword......................................................................................................................vi An Overview of the Design Process.................................................................................vi How to Use the Duct System Design Notebook.................................................................viii Chapter 1: Airflow Fundamentals for Supply Duct Systems ...................................................1.1 1.1 Overview ..........................................................................................................1.1 1.2 Conservation of Mass.........................................................................................1.1 1.2.1 Continuity Equation ................................................................................1.1 1.2.2 Diverging Flows .....................................................................................1.3 1.3 Conservation of Energy ......................................................................................1.4 1.3.1 Static Pressure ........................................................................................1.5 1.3.2 Velocity Pressure.....................................................................................1.6 1.3.3 Total Pressure.........................................................................................1.7 1.4 Pressure Loss in Duct (Friction Loss)..................................................................1.7 1.4.1 Round Duct ............................................................................................1.8 1.4.2 Flat Oval Duct .......................................................................................1.10 1.4.3 Rectangular Duct ....................................................................................1.13 1.4.4 Acoustically Lined and Double-wall Duct ..................................................1.14 1.4.5 Nonstandard Conditions...........................................................................1.15 1.5 Pressure Loss in Supply Fittings ..........................................................................1.17 1.5.1 Loss Coefficients.....................................................................................1.18 1.5.2 Elbows...................................................................................................1.18 1.5.3 Diverging-flow Fittings: Branches ............................................................1.21 1.5.4 Diverging-flow Fittings: Straight-Throughs, Reducers, and Transitions............................................................................................1.28 1.5.5 Miscellaneous Fittings .............................................................................1.32 1.5.6 Nonstandard Conditions...........................................................................1.37 Chapter 2: Designing Supply Duct Systems..........................................................................2.1 2.1 Determination of Air Volume Requirements...........................................................2.1 2.2 Location of Duct Runs .......................................................................................2.1 2.3 Selection of a Design Method..............................................................................2.2 2.3.1 Equal Friction Design .............................................................................2.2 2.3.2 Constant Velocity Design .........................................................................2.3 2.3.3 Velocity Reduction Design........................................................................2.3 2.3.4 Static Regain Design ...............................................................................2.4 2.3.5 Total Pressure Design..............................................................................2.4 2.3.6 Which Design Method? ............................................................................2.4 2.4 Equal Friction Design .........................................................................................2.5 2.4.1 Introduction............................................................................................2.5 2.4.2 Duct Sizing.............................................................................................2.5 2.4.3 Determination of System Pressure .............................................................2.10 2.4.4 Excess Pressure.......................................................................................2.15 2.5 Static Regain Design ..........................................................................................2.16 2.5.1 Introduction............................................................................................2.16 2.5.2 Duct Sizing.............................................................................................2.16 2.5.3 Determination of System Pressure .............................................................2.20 2.5.4 Excess Pressure.......................................................................................2.20 i Duct System Design Chapter 3: Analyzing and Enhancing Supply Duct Systems 3.1 Analyzing a Preliminary Supply Design.................................................................3.1 3.2 Balancing Equal Friction Designs .........................................................................3.1 3.2.1 Balancing Dampers .................................................................................3.1 3.2.2 Orifice Plates .........................................................................................3.3 3.2.3 Enhanced Equal Friction Design ..............................................................3.4 3.3 Enhanced Static Regain Design............................................................................3.8 3.4 Fan Selection.....................................................................................................3.13 3.4.1 System Effect Performance Deficiencies ....................................................3.14 3.4.2 Duct Performance Deficiencies.................................................................3.15 3.4.3 Fan Pressures .........................................................................................3.16 3.5 Cost Optimization ..............................................................................................3.17 Chapter 4: Airflow Fundamentals for Exhaust Duct Systems 4.1 Overview ..........................................................................................................4.1 4.2 Conservation of Mass.........................................................................................4.1 4.2.1 Continuity Equation ................................................................................4.1 4.2.2 Converging Flows ...................................................................................4.1 4.3 Conservation of Energy ......................................................................................4.2 4.4 Pressure Losses.................................................................................................4.3 4.4.1 Pressure Loss in Duct (Friction Loss) ........................................................4.3 4.4.2 Pressure Loss in Return or Exhaust Fittings (Dynamic Losses) .....................4.3 4.4.3 Nonstandard Conditions for Dynamic Losses ..............................................4.10 Chapter 5: Designing Exhaust Duct Systems ........................................................................5.1 5.1 Defining the Application and Determining Parameters.............................................5.1 5.2 Determining Capture Velocities and Air Volume Requirements.................................5.1 5.3 Locating Duct Runs ...........................................................................................5.9 5.4 Determining Duct Sizes Based on Velocity Constraints...........................................5.9 5.5 Mixing of Two Air Streams ................................................................................5.11 5.6 Determining System Pressure Requirements .........................................................5.15 Chapter 6: Analyzing Exhaust Duct Systems.........................................................................6.1 6.1 Fitting Selection.................................................................................................6.1 6.2 Balancing the System .........................................................................................6.1
Recommended publications
  • Document Title
    Yale University Design Standards 15815 CONTENTS A. Summary Metal Ducts B. System Design and Performance Requirements C. Materials This document provides design standards D. Installation Guidelines only, and is not intended for use, in whole E. Quality Control—Ductwork Field Tests or in part, as a specification. Do not copy F. Cleaning and Adjusting this information verbatim in specifications or in notes on drawings. Refer questions and comments regarding the content and use of this document to the Yale University Project Manager. A. Summary This section contains design criteria for rectangular and round metal ductwork, duct liners, and hangers for supply, return, and exhaust systems. B. System Design and Performance Requirements 1. Keep the ductwork layout simple. Use short, direct runs where ever possible, and conserve ceiling space. 2. All return/exhaust air must be ducted. The use of ceiling plenums for return/exhaust air is prohibited. 3. Perchloric acid fume exhaust ductwork must be individually ducted without connection to other exhausts. 4. Fume hoods and contaminated or hazardous areas must be exhausted by a system of ducts entirely separate from all other exhaust systems. The location of area exhausts should be carefully coordinated with reference to remoteness from supply air outlets, doors, and windows. Animal areas and toilet rooms shall have separate exhausts. See Section 00705: General HVAC Design Conditions. 5. Wherever possible, exhaust ducts carrying noxious or corrosive fumes must be under negative pressure; connect them on the suction side of the fan. 6. Review appropriate SMANCA sections (laboratory) when designing duct distribution systems. Subdivision 15800: Air Distribution 1 Revision 2, 05/13 Yale University Design Standards Section 15815: Metal Ducts 7.
    [Show full text]
  • End of Section 23 31 14
    University of Houston Master Construction Specifications Insert Project Name SECTION 23 31 14 - DUCTWORK ACCESSORIES PART 1 - GENERAL 1.1 RELATED DOCUMENTS: A. The Conditions of the Contract and applicable requirements of Division 1, "General Requirements", and Section 23 01 00, "Mechanical General Provisions", govern this Section. 1.2 DESCRIPTION OF WORK: A. Work Included: Provide ductwork accessories as shown on the Drawings, specified and required. B. Types: The types of ductwork accessories required for the project include, but are not limited to: 1. Flexible connections. 2. Direction and volume control dampers. 3. Fire dampers. 4. Fire/smoke dampers. 5. Smoke Dampers. 6. Radiation dampers. 7. Flashing and counterflashing. 8. Turning vanes. 9. Duct access doors and inspection plates. 10. Test openings. 11. Screens. 12. Miscellaneous ductwork materials. 1.3 QUALITY ASSURANCE: A. SMACNA Compliance: Comply with applicable portions of Sheet Metal and Air Conditioning Contractors' National Association (SMACNA) "HVAC Duct Construction Standards", current edition. B. ASHRAE Standards: Comply with American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE) recommendations pertaining to construction of ductwork accessories, except as otherwise indicated. C. Certification: Fire, fire/smoke and smoke dampers shall be UL-listed, FM-approved and comply with applicable building code requirements. D. Manufacturers: Provide products complying with the specifications and produced by one of the following: 1. American Foundry. 2. Air Balance Inc. 3. Duro-Dyne. 4. Elgin Sheet Metal Products. 5. Nailor Industries. 6. Prefco. 7. Ruskin. 8. Tuttle and Bailey. 9. United Sheet Metal. 10. Vent-Fabrics, Inc. 11. Ventlok. 12. Young Regulator Co. 1.4 SUBMITTALS: AE Project Number: Ductwork Accessories 23 31 14 – 1 Revision Date: 1/29/2018 University of Houston Master Construction Specifications Insert Project Name A.
    [Show full text]
  • Simplified Method for Indoor Airflow Simulation
    Proceedings of CLIMA 2000 World Congress, Brussels, Belgium. Simplified Method for Indoor Airflow Simulation Qingyan Chen and Weiran Xu Building Technology Program, Department of Architecture Massachusetts Institute of Technology Room 5-418, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA Phone: 617-253-7714, Fax: 617-253-6152 E_mail: [email protected] URL: http://web.mit.edu/qchen/www/ ABSTRACT At present, numerical simulation of room airflows is mainly conducted by either the Computational-Fluid-Dynamics (CFD) method or various zonal/network models. The CFD approach needs a large capacity of computer and a skillful expert. The results obtained with zonal/network models have great uncertainties. This paper proposes a new simplified method to simulate three-dimensional distributions of air velocity, temperature, and contaminant concentrations in rooms. The method assumes turbulent viscosity to be a function of length-scale and local mean velocity. The new model has been used to predict natural convection, forced convection, mixed convection, and displacement ventilation in a room. The results agree reasonably with experimental data and the CFD computations. The simplified method uses much less computer memory and the computing speed is at least 10 times faster, compared with the CFD method. The grid number can often be reduced so that the computing time needed for a three-dimensional case can be a few minutes in a PC. INTRODUCTION Proper design of indoor environment requires detailed information of indoor air distribution, such as airflow pattern, velocity, temperature, and contaminant concentrations. The information can be obtained by experimental measurements and computational simulations. Experimental measurements are reliable but need large labor- effort and time.
    [Show full text]
  • CHAVEZ-DISSERTATION-2016.Pdf
    Copyright by Kyle Feliciano Chavez 2016 The Dissertation Committee for Kyle Feliciano Chavez certifies that this is the approved version of the following dissertation: Variable Incidence Angle Film Cooling Experiments on a Scaled Up Turbine Airfoil Model Committee: David G. Bogard, Supervisor Frederick Todd Davidson Atul Kohli Ofodike A. Ezekoye Michael E. Webber Variable Incidence Angle Film Cooling Experiments on a Scaled Up Turbine Airfoil Model by Kyle Feliciano Chavez, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2016 Dedication This document is dedicated to my family. Dad, you have always been so encouraging, helpful, and levelheaded. If not for all of your help and encouragement, I’m not sure I’d be where I’m at today. To my brother, I’m so happy for the years we spent growing up together. They are some of my fondest memories and I’ll never forget them. Mom, if you were still here today, you’d be so proud. I think of you all constantly, and I love you all. Acknowledgements I would like to first and foremost thank Dr. Bogard, who has supported and taught me so much along the way. Your dedication to your field of research is an inspiration to me, and you’ve helped shape me in to the engineer I am today. You also taught me how great it is to be “mighty fine” all the time, and that’s priceless in and of itself.
    [Show full text]
  • 23.31.00 Ductwork
    UNIVERSITY OF PENNSYLVANIA Design Standards Revision July 2019 SECTION 233100 – DUCTWORK 1.0 Acoustical duct lining in any part of the duct system is prohibited. All ductwork requiring insulation shall be externally insulated (Refer to the Sheet Metal Ductwork Insulation Schedule in Section 230700 for insulation types and thickness). Double walled ducts consisting of an outer wall of galvanized sheet metal, an inner wall of perforated galvanized sheet metal with insulation sandwiched between the layers is permitted. 2.0 All ductwork shall be designed, constructed, supported and sealed in accordance with SMACNA HVAC Duct Construction Standards and pressure classifications. When the ductwork pressure classification of these standards is exceeded, construct ductwork in accordance with SMACNA Round and Rectangular Industrial Duct Construction Standards. The following preferences or modifications to the Standards shall be specified: A. Radius elbows with a construction radius of 1.5 the duct width are preferred to square elbows. B. All square elbows must be constructed with single thickness turning vanes, Runner Type 2 as shown in Figures 4-3 and 4-4 of SMACNA Duct Construction Standards - Metal and Flexible. Where a rectangular duct changes in size at a square-throat elbow fitting, use single thickness turning vanes with trailing edge extensions aligned with the sides of the duct. C. Air extractors and splitter dampers are not permitted. D. Transitions and offsets shall follow Figure 4-7 of SMACNA HVAC Duct Construction Standards - Metal and Flexible, except that sides of transitions shall slope a maximum of 15 degrees. E. Minimum duct gauge shall be 22 for ducts up through 43", 20 gauge up through 60" and 18 gauge above 60".
    [Show full text]
  • Myths and Mythtery of Air Flow Do Not Be Swayed by Misconceptions About Air Flow in the Industry
    Myths And Mythtery of Air Flow Do not be swayed by misconceptions about air flow in the industry. By R.B. (Buzz) Est E s , C M s n HVAC system cannot function optimally or properly unless the duct system is properly designed and installed. AToo often customers buy “high efficiency” systems that do not deliver the energy-saving performance because of a defi- cient duct system. This is usually because many contractors “design” systems based on ignorance and superstition instead Discerning fact from fiction is half the battle to under- of correct knowledge of air flow. Following are some of these standing air flow and HVAC system/duct design. myths and explanations as to why they are incorrect. exhausting air from it. The relative numbers remain the same. Duct is too big—a.k.a. never let the air velocity get too Perhaps some numbers might be negative, relative to the air low. False. The limiting factors on duct size are space and outside the room, but that does not change any of the math. cost. Instead of a complicated technical explanation, imag- ine a room with 10 ft x 10 ft x 10 ft of air-tight construction Any obstruction in a fluid flow stream will add tur- except for two 1-sq.-ft openings in opposite walls. One of the bulence and restriction (T&R), this includes turning openings has a fan blowing 100 cfm at a velocity of 100 fpm. vanes. False. Installing turning vanes can improve the flow The middle of the room has a velocity of 100 cfm over an around an ell so much that the overall result is much less area of 100 sq.
    [Show full text]
  • Dampers and Airflow Control Dampers and Airflow Control Dampers and Airflow Dampers and Airflow Control Is the First Book of Its Kind
    Good airflow control results when solid mechanical design is combined with excellent control strategy. Modern building requirements for the coordination of air ventilation, pres- surization, temperature control, fire and smoke control, and energy reduction require inte- gration at every level of design and operation. Dampers and Airflow Control Dampers and AirflowDampers Control Dampers and Airflow Control is the first book of its kind. It bridges the gap between Laurence G. Felker and Travis L. Felker mechanical design and final damper control. This book covers not only theoretical aspects of application design but also practical aspects of existing applications, and the material applies to both new and retrofit projects. Among the topics discussed are new ASHRAE damper testing data, realistic but simplified pressure drop calculations, damper installations, and methods for economizers and mini- mum outdoor-air control. Tactics to linearize system airflow using damper response curves are also discussed, and new methods—not found in existing literature—are presented to characterize damper response to fit a process. Additional topics include torque, linkages, structural support, actuation, and engineered damper assemblies. Dampers and Airflow Control is written for building systems designers and contractors and provides sound examples and best practices to achieve good airflow control. Felker and Felker Felker American Society of Heating, Refrigerating and ISBN 978-1-933742-53-3 Air-Conditioning Engineers, Inc. 1791 Tullie Circle Atlanta, GA 30329-2305 Telephone: 404-636-8400 (worldwide) 9 781933 742533 www.ashrae.org Product code: 90138 11/09 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Dampers and Airflow Control.indd 1 11/9/2009 4:30:48 PM Dampers and Airflow Control © American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
    [Show full text]
  • Basis of Design
    UNIVERSITY OF WASHINGTON Mechanical Facilities Services Heating Ventilation and Air Conditioning Design Guide Ductwork and Duct Accessories Basis of Design This section applies to the design and installation of ductwork, air terminal boxes, air outlets and inlets, volume dampers, pressure relief dampers, smoke/fire dampers, and smoke/fire damper actuators. Design Criteria Select duct velocities to meet N.C. requirements of each occupied space. NC level requirements shall be identified in the Basis of Design narrative. Coordinate required NC levels with University Project Manager and users. Supply, Return and Non Fume Exhaust Ductwork Provide a 6-inch pressure rating for supply ductwork and plenums between the supply fan and the zone terminal boxes; for ductwork downstream of the terminal box, provide a 2-inch pressure rating. If pressure classes less than those given above are considered sufficient for a specific application, review with Engineering Services before specifying a lower rating. Use the ASHRAE Handbook of Fundamentals chapter on duct design to determine the allowable leakage rate (cfm/100 sq.ft.) at the specified test pressure for each type of ductwork on the project other than fume exhaust ductwork. Specify for each type of ductwork the duct pressure rating, the pressure to apply during the duct leakage test, and the allowable cfm/100 sq.ft. leakage rate at the test pressure. Minimize use of square elbows. Provide turning vanes in square elbows of supply ductwork. Do not use turning vanes in return or exhaust ductwork. To minimize noise levels in the space, specify balancing dampers in lieu of registers. Provide a balancing damper for each outlet and each inlet.
    [Show full text]
  • Ger-4610 (3/2012)
    GE Energy Exhaust System Upgrade Options for Heavy Duty Gas Turbines GER-4610 (3/2012) Timothy Ginter Energy Services Note: All values in this GER are approximate and subject to contractual terms. ©201 2, General Electric Company. All rights reserved. Contents: Abstract . 1 Configuration Overview . 2 Site Inspections . 5 Available Exhaust Upgrades . 8 Frames, Aft Diffusers, Cooling, and Blowers . 12 FS1U – Exhaust Frame Assembly Upgrades (51A-R, 52A-C, 61A/B) . 13 FS1W – Exhaust Frame Assembly and Cooling Upgrades (71A-EA, 91B/E) . 14 FS2D – Exhaust Frame Blower Upgrade (71E/EA, 91E) . 21 FW3N – Exhaust Diffuser Upgrades (6FA, 7F-FA+, 9F/FA) . 22 Plenums and Flex Seals . 22 FD4H – Exhaust Plenum Upgrades (32A-K, 51A-R, 52A-C, 61A/B, 71A-EA, 91B/E, 6FA, 7F-FA+, 9F/FA) . 23 FD4H – Exhaust Flex Seal Upgrades (61A/B, 71A-EA, 91B/E) . 29 FD4H – Engineering Site Visits . 29 Ductwork, Stacks, and Silencers . 30 FD6G-K and FD4H – Exhaust Duct, Stack, and Silencer Upgrades (32A-K, 51A-R, 52A-C, 61A/B, 71A-EA, 91B/E, 6FA, 7F-FA+, 9F/FA) . 30 Summary . 32 References . 33 List of Figures . 34 GE Energy | GER-4610 (3/2012) i ii Exhaust System Upgrade Options for Heavy Duty Gas Turbines Abstract This document discusses the Corrosion and Heat Resistant Original Equipment Manufacturer (CHROEM*) improved exhaust Since their introduction in 1978, advances in materials, cooling, systems offered by GE. (See Figure 1.) The CHROEM exhaust and design have allowed GE gas turbines to operate with system applies the latest GE technology to extend life and increased firing temperatures and airflows.
    [Show full text]
  • HIGH-EFFICIENCY FURNACE INSTALLATION GUIDE for EXISTING HOUSES Important Considerations for Contractors and Homeowners
    HIGH-EFFICIENCY FURNACE INSTALLATION GUIDE FOR EXISTING HOUSES Important Considerations for Contractors and Homeowners This Guide was developed to provide contractors and homeowners with general information on best practice approaches to installing high- efficiency (replacement) furnaces in existing residential and small commercial buildings. DRAFT Table of Contents FOREWORD . 3 OVERVIEW . 4 HOMEOWNER SECTION . 5 House as a system . 5 Hints and tips . 6 identifying quality installations . 7 example quotation sheet . 8 CONTRACTOR SECTION . 9 steps to a better installation . 9 Pre-changeout. 11 Installation. 13 commissioning. 16 education and maintenance . 17 challenges and solutions . 18 example quotation sheet . 26 ADDITIONAL RESOURCES . 27 APPENDIX A . 28 hvac venting and condensate management bulletin . 29 2 | HIGH-EFFICIENCY FURNACE INSTALLATION GUIDE FOR EXISTING HOUSES Foreword This Guide provides homeowners and HVAC contractors with general information on completing high- efficiency furnace retrofits. It provides an overview of key steps involved in the furnace retrofit process including pre-changeout, installation, commissioning, and education and maintenance. Additionally, common challenges encountered by HVAC contractors during furnace installation are covered with suggested solutions for overcoming these barriers discussed. This publication is not intended to replace residential furnace installation training materials developed for HVAC contractors. Acknowledgements This publication was developed through consultation with many individuals and organizations involved in the residential furnace industry. This Guide would not have been possible without the support and guidance of FortisBC, the Province of British Columbia, the Thermal Environmental Comfort Association (TECA), the Heating, Refrigeration, and Air Conditioning Institute of Canada (HRAI), and Energy Star®. This Guide was prepared by RDH Building Science Inc.
    [Show full text]
  • Ventilation for Acceptable Indoor Air Quality
    ANSI/ASHRAE Addendum n to ANSI/ASHRAE Standard 62-2001 Ventilation for Acceptable Indoor Air Quality Approved by the ASHRAE Standards Committee on June 28, 2003; by the ASHRAE Board of Directors on July 3, 2003; and by the American National Standards Institute on January 8, 2004. This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instruc- tions, and deadlines may be obtained in electronic form from the ASHRAE web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Stan- dard and printed copies of a public review draft may be pur- chased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321- 5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527- 4723 (for orders in U.S. and Canada). ©Copyright 2003 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ISSN 1041-2336 ASHRAE Standard Project Committee 62.1 Cognizant TC: TC 4.3, Ventilation Requirements and Infiltration SPLS Liaison: Fredrick H. Kohloss Andrew K. Persily, Chair* Roger L. Hedrick Walter L. Raynaud* David S. Bulter, Sr., Vice-Chair* Thomas P. Houston* Lisa J. Rogers Leon E. Alevantis* Eli P. Howard, III* Robert S. Rushing* Michael Beaton Ralph T. Joeckel Lawrence J.
    [Show full text]
  • Specification 541 Rev. 1 – General Construction of HVAC Installations
    TABLE OF CONTENTS 1.0 SCOPE .............................................................................................................................................. 5 2.0 STANDARDS, CODES AND SPECIFICATIONS ............................................................................. 6 2.1 GENERAL SPECIFICATIONS ......................................................................................................................... 6 2.2 STANDARDS AND CODES ........................................................................................................................... 6 2.3 CERTIFICATION ................................................................................................................................................ 6 3.0 SERVICE CONDITIONS .................................................................................................................. 7 3.1 ENVIRONMENTAL CONDITIONS .............................................................................................................. 7 4.0 GENERAL REQUIREMENTS ........................................................................................................... 8 4.1 DRAWINGS AND SPECIFICATIONS .......................................................................................................... 8 4.2 MATERIAL, WORKMANSHIP AND SUITABILITY .................................................................................. 9 4.3 AREA CLASSIFICATION ................................................................................................................................
    [Show full text]