Quality Management in Japan

Total Page:16

File Type:pdf, Size:1020Kb

Quality Management in Japan Section 3 Taguchi’s Methods versus Other Quality Philosophies Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu. Quality Management 39 in Japan 39.1. History of Quality Management in Japan 1423 Dawn of Quality Management 1423 Period Following World War II 1424 Evolution from SQC to TQC 1426 Diffusion of Quality Management Activity 1427 Stagnation of Quality Management in the Second Half of the 1990s 1428 39.2. Quality Management Techniques and Development 1428 Seven QC Tools and the QC Story 1428 Quality Function Deployment to Incorporate the Customers’ Needs 1430 Design of Experiments 1431 Quality Engineering 1435 References 1440 39.1. History of Quality Management in Japan The idea that the quality of a product should be managed was born in Japan a Dawn of Quality long time ago. We can see some evidence that in making stone tools in the New Management Stone Age, our ancestors managed quality to obtain the same performance around 10,000 years ago. In the Jomon Period, a few centuries before Christ, earthenware were unified in terms of material and manufacturing method. In the second half of the Yayoi Period, in the second or third century, division of work (specialization) occurred in making earthenware, agricultural implements, weapons, and ritual tools. After the Tumulus Period, in the fourth or fifth century, the governing or- ganization summoned specialized engineers from the Asian continent and had them instruct Japanese engineers. For the geographical reason that Japan is a small country consisting of many archipelagoes, this method of convening leaders from technologically advanced foreign countries has been continued until the twentieth century. Japan did not document these techniques before the twentieth century. The major reason for this is that numerous technologies were imported from overseas, and superb technologies, such as the manufacture of Japanese swords, were in- herited through an apprenticeship system. In Japan, technological inheritance Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu 1423 Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu. 1424 39. Quality Management in Japan often relies more on ‘‘learn, steal, and realize’’ than on ‘‘instruct or communicate.’’ In fields other than manufacturing [e.g., Judo, Kendo (swordsmanship), Kado (flower arrangement), or Sado (tea ceremony)], Japanese leaders give detailed instructions to apprentices and make them learn the reasons for themselves. This is regarded as one of the most typical instructional methods in Japanese culture. Another instructional method relied on masters leaving know-how to descendants in the next generation (called ‘‘ogisho’’). These were considered not modern com- mentaries or manuals but difficult-to-comprehend documents that could be un- derstood only through repeated discipline. Therefore, even if a superb technology was born, it was not spread widely and did not boost the total technological level. Even after the Meiji Era arrived in 1868 after the Edo Shogunate was toppled, the major methods of technological innovation were introduced through foreign doc- uments or importation of engineers. In the area of scientific quality management, quite a few technologies were introduced. In 1931, when Shewhart completed Economic Control of Quality of Man- ufactured Product, the Shewhart control chart began to be used in the manufactur- ing process for light bulbs. It was in 1935 when the design of experiments, pioneered by Fisher, was first utilized in Japan. Even under the militaristic regime during World War II, which suppressed research activities, translation of bibliog- raphies by Carl Pearson was continued and a Japanese-unique sampling inspection chart was invented by Toshio Kitagawa. By the end of the war, statistical methods were being applied to production processes in some military plants [1,2]. Never- theless, as a whole, quality management levels in manufacturing products, except for craft products such as pottery or lacquerware, was not so high; therefore, ‘‘if it’s cheap, it’s bad’’ symbolized prewar Japanese products. Period Following Many books have already detailed quality management in Japan after the war. In World War II 1946, the GHQ of the Allied Forces summoned experts in statistical research from the United States to study required resources and telecommunication network systems needed for reviving Japan. The investigation significantly stimulated Jap- anese statisticians and quality management researchers. In 1950, W. Edwards Dem- ing, a U.S. specialist in sampling theory and statistical quality management, instructed Japanese quality management researchers in statistical quality manage- ment. His key advice was: (1) product development and production is an endless cycle (shown in Figure 39.1), and by repeating this cycle, we can advance our products and corporate activity to produce them (this cycle is called the Deming cycle in Japan); and (2) statistical procedures can be applied to various stages in corporate management. After his instruction in Japan, various companies put his advice into practice. Based in part on money, Deming donated from royalties on the textbook used for his lectures, the Deming Prize was founded in 1951 [3]; it is still awarded to companies that accomplish significant results through strenuous quality manage- ment. The first companies to win the prize in 1951 were Yahata Steel, Fuji Steel, Showa Denko, and Tanabe Seiyaku. Since the Deming Prize played an essential role in developing Japan’s industry worldwide, it was regarded as ‘‘the Messiah’’ in Japan’s industries. Between the end of the war and the 1960s, statistical quality management meth- ods, developed primarily in Europe and the United States, were studied vigorously and subsequently adopted by many companies and formulated as the Japan In- dustry Standards (JIS). In this period, companies focused mainly on introducing 39.1. History of Quality Management in Japan 1425 Figure 39.1 Deming cycle statistical methods such as the Shewhart control chart, statistical testing, sampling inspection, and Fischer’s design of experiments. It is often dubbed the SQC (sta- tistical quality control) period. While the Shewhart control chart [4] (Figure 39.2) contributed considerably to the production process, it brought about another result. The fundamental man- agerial concept behind the control chart—that we should recognize that any type 310 UCL = 305.4 X 300 X = 291.5 290 Average, Average, 280 LCL = 277.6 Figure 39.2 X-R control chart 30 R UCL = 27.3 20 Range, R = 12.9 10 NumberNumber of LotsLots 1426 39. Quality Management in Japan of job always has variability, define a normal result using past data, determine control limits for an abnormal state, monitor the result once an abnormality hap- pens, start an investigation, find the cause, and take corrective measures— contributed much to general management. Based on the Deming cycle illustrated in Figure 39.1, the management cycle (PDCA cycle) was invented and used repeatedly to improve business. The ‘‘P’’ in PDCA represents ‘‘plan,’’ to plan how we implement a job and what results we attain before working on the job. The ‘‘D’’ ‘‘Do,’’ to fulfill the job as planned. The ‘‘C’’ represents ‘‘check,’’ to check whether or not we have accomplished the same result or followed the same process as scheduled. The ‘‘A’’ represents ‘‘action,’’ to analyze the cause and take measures if the result has not been achieved. Since this cycle is applicable not only to management and improvement of the production process but also to many other kinds of businesses, job improvement based on quality management has started to spread. The PDCA cycle (Figure 39.3) has been emphasized as a key method in TQC (total quality control), in line with Shewhart’s concept of management. In 1954, J. M. Juran, an advisor in the American Management Association at that time, was invited to Japan by Japanese quality management researchers. In Juran’s lectures and instructions, statistical methods as one of the pillars of modern quality management were not mentioned. On the contrary, managerial aspects of quality management were stressed. Although this concept was implemented by Feigenhaum in the United States, it stood out as total quality control (TQC) in the second half of the 1960s in Japan. Evolution from SQC In the 1960s, trade in products such as automobiles, machinery, and electric ap- to TQC pliances, all of which had been protected by the Japanese government during Japan’s postwar rehabilitation period, was liberalized. Although quality manage- ment activity was reinforced to make the products more competitive, it was nec- essary to enhance products’ attractiveness as well as their quality. Therefore, all departments from product planning to sales, or all hierarchical people from top management to manufacturing operators, were encouraged to participate in qual- ity management activity, and at the same time, interdepartmental activity was re- inforced. This was TQC (later changed to TQM). B. Plan Figure 39.3 PDCA cycle 39.1. History of Quality Management in Japan 1427 TQC stresses not only presentation of the PDCA as top management’s policy and deployment of the policy to middle management in charge of a core of cor- porate administration but also companywide promotion of job improvement. To filter the job improvement activity down to bottom-level employees, the QC circle was introduced and subsequently spread nationwide. The QC circle, founded by the Japanese Union of Scientists and Engineers in 1962, contributed tremendously to quality improvement. The other characteristic of TQC was to synthesize quality management proce- dures by introducing quality assurance and reliability management, which had been pioneered in the United States. The concept of quality assurance, including compensation to customers, was introduced to solve the problems caused by huge complicated public systems or their failures. The mileage assurance for automo- biles was a typical example. Since indemnification incurred by system failures di- minishes corporate profit, each company was urged to reduce system failures.
Recommended publications
  • Indian Statistical Institute
    CHAPTER VII INDIAN STATISTICAL INSTITUTE 7.1 The Indian Statistical Institute (ISI) came into being with the pioneering initiative and efforts of Professor P.C. Mahalanobis in early thirties (registered on 28 April, 1932). The Institute expanded its research, teaching, training and project activities and got national/international recognitions. The Institute was recognized as an “Institute of National Importance” by an Act of Parliament, known as “Indian Statistical Institute Act No.57 of 1959”. Significantly, Pandit Jawaharlal Nehru, the then Prime Minister piloted the bill in the Parliament in 1959. This Act conferred the right to hold examinations and award degrees/diplomas in Statistics. Degree courses viz. Bachelor of Statistics (B.Stat.), Master of Statistics (M.Stat.) and post graduate diplomas in SQC & OR and Computer Science were started from June 1960. The Institute was also empowered to award Ph.D./D.Sc. degree from the same year. Subsequently, Master of Technology courses in Computer Science and in Quality, Reliability & Operations Research were also started. The Institute’s scope was further enlarged to award degrees/diplomas in Statistics, Mathematics, Quantitative Economics, Computer Science and such other subjects related to Statistics by virtue of “Indian Statistical Institute (Amendment) Act, 1995. The Institute took up research activities not only in Statistics/Mathematics but also in Natural and Social Sciences, Physics and Earth Sciences, Biological Sciences, Statistical Quality Control & Operations Research and Library and Information Sciences. 7.2 Sankhya – The Indian Journal of Statistics, being published by the Institute since 1933, is considered as one of the leading Statistical Journals of the world.
    [Show full text]
  • Quality Management Tekst Do Nagrania Audio
    Quality Management Tekst do nagrania audio Kurs Techniczny Angielski 2.0 QUALITY MANAGEMENT 1 Quality Management Quality management ensures that an organization, product or service is consistent. It has four main components: quality planning, quality assurance, quality control and quality improvement. Quality management is focused not only on product and service quality, but also on the means to achieve it. Quality management, therefore, uses quality assurance and control of processes as well as products to achieve more consistent quality. What a customer wants and is willing to pay for it determines quality. It is written or unwritten commitment to a known or unknown consumer in the market . Thus, quality can be defined as fitness for intended use or, in other words, how well the product performs its intended function. Evolution Walter A. Shewhart made a major step in the evolution towards quality management by creating a method for quality control for production, using statistical methods, first proposed in 1924. This became the foundation for his ongoing work on statistical quality control. W. Edwards Deming later applied statistical process control methods in the United States during World War II, thereby successfully improving quality in the manufacture of munitions and other strategically important products. Quality leadership from a national perspective has changed over the past decades. After the second world war, Japan decided to make quality improvement a national imperative as part of rebuilding their economy, and sought the help of Shewhart, Deming and Juran, amongst others. W. Edwards Deming championed Shewhart's ideas in Japan from 1950 onwards. He is probably best known for his management philosophy establishing quality, productivity, and competitive position.
    [Show full text]
  • Optimization of Cutting Parameters to Minimize the Surface Roughness In
    PP Periodica Polytechnica Optimization of Cutting Parameters Mechanical Engineering to Minimize the Surface Roughness in the End Milling Process Using the 61(1), pp. 30-35, 2017 Taguchi Method DOI: 10.3311/PPme.9114 Creative Commons Attribution b João Ribeiro1*, Hernâni Lopes2, Luis Queijo1, Daniel Figueiredo3 research article Received 23 February 2016; accepted after revision 21 September 2016 Abstract 1 Introduction This paper presents a study of the Taguchi design application The machining is one of the most important manufacturing to optimize surface quality in a CNC end milling operation. processes in the industry today. This is usually defined as the The present study includes feed per tooth, cutting speed and process of removing material from a workpiece or part in the radial depth of cut as control factors. An orthogonal array form of chips. A mechanical part could be machined using dif- of L9 was used and the ANOVA analyses were carried out to ferent techniques without major differences in the final results. identify the significant factors affecting the surface roughness. However, the efficiency is not the same for all techniques. In The optimal cutting combination was determined by seeking other words, to obtain the same part, there is a machining tech- the best surface roughness (response) and signal-to-noise nique most appropriate that gives the best quality for the lower ratio. The study was carried-out by machining a hardened machining time and energy consumption. The choice of the tech- steel block (steel 1.2738) with tungsten carbide coated tools. nique depends on the goal to be achieved and, for machining, is The results led to the minimum of arithmetic mean surface related to the part material and its geometry, as well as, machines roughness of 1.662 µm, being the radial depth of cut the most and tools available.
    [Show full text]
  • Quality Gurus and Their Contribution
    ____________________________________________________________________________________ Quality Gurus & their contribution Walter Shewhart Edward Demings Philip Crosby Joseph Juran Armand Feigenbaum Kaoru Ishikawa Genichi Taguchi Shigeo Shingo James Harrington Contribution of Walter Shewhart Grandfather of quality control Used statistics to explain process variability Deming made PDSA cycle for his work Developed statistical quality charts ================================================ YourPedia For any query or detail Contact us at: 9855273076, or visit at www.yourpedia.in 1 ____________________________________________________________________________________ Contribution of Edward Deming Greatest influence on quality control Father of Quality Control Implemented statistical quality control in Japan post WW2 Reduce uncertainty & variability If Japan can: why can’t we was broadcast for him Associated with Japanese union of scientist & engineers (JUSE) Stressed management responsibility Contributed to TQM 14 Points of TQM PDCA/PDSA quality cycles 7 deadly sins of management Deming prize in quality in Japan System of Profound knowledge Contribution of Kaoru Ishikawa Cause effect diagram (fishbone diagram) Wrote book “Guide to Quality Control” Wrote book “What Is Total Quality Control” Father of the Quality Circle Movement Quality Circle Problem solving methodology Concept of “Internal customer” Contribution of Joseph Juran Quality defined as “Fitness for use” Quality Trilogy Quality Planning Roadmap “Little
    [Show full text]
  • Quality Control, Robust Design, and the Taguchi Method the Wadsworth & Brooks/Cole Statisticsiprobability Series
    Quality Control, Robust Design, and the Taguchi Method The Wadsworth & Brooks/Cole StatisticsiProbability Series Series Editors O. E. Barndorff-Nielsen, Aarhus University Peter J. Bickel, University of California, Berkeley William S. Cleveland, AT&T Bell Laboratories Richard M. Dudley, Massachusetts Institute of Technology R. Becker, J. Chambers, A. Wilks, The New S Language: A Programming Environment for Data Analysis and Graphics P. Bickel, K. Doksum, J. Hodges, Jr., A Festschrift for Erich L. Lehmann G. Box, The Collected Works of George E. P. Box, Volumes I and II, G. Tiao, editor-in-chief L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees J. Chambers, W. S. Cleveland, B. Kleiner, P. Tukey, Graphical Methods for Data Analysis W. S. Cleveland, M. McGill, Dynamic Graphics for Statistics K. Dehnad, Quality Control, Robust Design, and the Taguchi Method R. Durrett, Lecture Notes on Particle Systems and Percolation F. Graybill, Matrices with Applications in Statistics, Second Edition L. Le Cam, R. Olshen, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Volumes I and II P. Lewis, E. Orav, Simulation Methodology for Statisticians, Operations Analysts, and Engineers H. J. Newton, TIMESLAB ' J. Rawlings, Applied Regression Analysis: A Research Tool J. Rice, Mathematical Statistics and Data Analysis J. Romano, A. Siegel, Counterexamples in Probability and Statistics J. Tanur, F. Mosteller, W. Kruskal, E. Lehmann, R. Link, R. Pieters, G. Rising, Statistics: A Guide to the Unknown, Third Edition J. Tukey, The Collected Works of J. w. Tukey, w. S. Cleveland, editor-in-chief Volume I: Time Series: 1949-1964, edited by D.
    [Show full text]
  • Top Ten Quality Gurus 1. Dr. Walter Shewhart 2. Dr. W. Edwards
    Top Ten Quality Gurus 1. Dr. Walter Shewhart 2. Dr. W. Edwards Deming 3. Dr. Joseph M. Juran 4. Armand V. Feigenbaum 5. Dr. Kaoru Ishikawa 6. Dr. Genichi Taguchi 7. Shigeo Shingo 8. Philip B. Crosby 9. Dr. Eliyahu M. Goldratt 10. Taiichi Ohno 1. Dr. Walter Shewhart Walter Andrew Shewhart (pronounced like "shoe-heart", March 18, 1891 - March 11, 1967) was an American physicist, engineer and statistician, sometimes known as the father of statistical quality control. W. Edwards Deming said of him: As a statistician, he was, like so many of the rest of us, self-taught, on a good background of physics and mathematics. Early life and education Born in New Canton, Illinois to Anton and Esta Barney Shewhart, he attended the University of Illinois before being awarded his doctorate in physics from the University of California, Berkeley in 1917. Work on industrial quality Bell Telephone’s engineers had been working to improve the reliability of their transmission systems. Because amplifiers and other equipment had to be buried underground, there was a business need to reduce the frequency of failures and repairs. When Dr. Shewhart joined the Western Electric Company Inspection Engineering Department at the Hawthorne Works in 1918, industrial quality was limited to inspecting finished products and removing defective items. That all changed on May 16, 1924. Dr. Shewhart's boss, George D. Edwards, recalled: "Dr. Shewhart prepared a little memorandum only about a page in length. About a third of that page was given over to a simple diagram which we would all recognize today as a schematic control chart.
    [Show full text]
  • Taguchi Method
    Achieving Robust Designs through Quality Engineering: Taguchi Method V Shuji Takeshita V Tetsuo Hosokawa (Manuscript received June 1, 2006) Development processes must be constantly reviewed to quickly provide superior products that meet the complex demands of the marketplace. Quality engineering (also known as the Taguchi Method) is a systematized methodology for technology development that is attracting much attention. Quality engineering focuses on the functionality (generic functions) of products and separates the components of systems into three function categories: signal factors, control factors, and error factors. Although quality engineering may be difficult to understand for engineers used to conventional methods, it should be actively promoted to change their mindset as well as that of the divisions to which they belong. This will help ensure innovation in manufacturing. This paper outlines efforts made to promote quality engineering and analytical tools such as WebSTAT and ParaNAVI that are used to support it. It also gives examples of its application in simulation, the development of process materials, and software evaluation. 1. Introduction design (parameter design) and has since been Robust designs are those that make products expanded to include the Mahalanobis-Taguchi resistant to variations in production processes and System (MTS) and function evaluation procedures. enable them to withstand influences in the In a method-ranking survey recently environments in which they are used. However, conducted by NIKKEI BizTec magazine,3) quality this does not just mean making designs that are engineering was ranked top for recognition as a resilient, it also means attaining maximum development and production support tool and for stability under limited design conditions, and an adoption rate, showing that its introduction is important means of achieving this is quality proceeding in various types of companies.
    [Show full text]
  • The Power of Taguchi Methods to Impact Change in U.S. Companies
    The Power Of Taguchi Methods To Impact Change In u.s. Companies L.P. Sullivan .- he advancement of "quality engi­ been neutralized by success stories stand the concepts since this re­ T neering" as a technology to si­ in the application of Taguchi Meth­ quires many years of application. mUltaneously reduce cost and im­ ods. However, some benefit has (Today there are only six or seven prove quality was developed by the been derived through this controver­ specialists in the U.S. that have full noted Japanese engineering special­ sy and debate. Traditional statistical Taguchi knowledge.) Many U.S. ist, Genichi Taguchi. Since 1960 Dr. methods are more in focus and companies, however, have been Taguchi has received the Deming "quality engineering" using statistics very successful at applying Taguchi Prize in Japan on four separate oc­ has emerged as a separate technol­ Methods. Therefore, a large number casions for his contribution to the ogy. of specialists exist in supplier com­ field of quality engineering. On Oc­ Advancements in traditional sta­ panies. tobElr 7, 1986, in Pittsburgh, PA, Dr. tistics have been promoted by J. When Ford introduced this tech­ Taguchi received the most prestig­ Stuart Hunter, who received the nology to suppliers (October 1982), ious prize from the International Deming Award for Applied Statistics ITT was the pioneer in case study Technology Institute: The Willard F. in December 1986. This award is for development and they now have Rockwell Medal for Excellence in excellence in the application of sta­ over 2000 case studies. Jim Pratt, Technology. tistics and we are very pleased that ITT director of statistical methods, This medal is awarded to a Dr.
    [Show full text]
  • Development of Quality Engineering in Japan
    Part II Quality Engineering: A Historical Perspective Taguchi’s Quality Engineering Handbook. Genichi Taguchi, Subir Chowdhury and Yuin Wu Copyright © 2005 Genichi Taguchi, Subir Chowdhury, Yuin Wu. Development of Quality Engineering 5 in Japan 5.1. Origin of Quality Engineering 127 5.2. Conceptual Transition of the SN Ratio and Establishment of Quality Engineering 131 5.3. On-line Quality Engineering and Loss Function 133 5.4. SN Ratio in Machining 135 5.5. Evaluation Method Using Electric Power in Machining 138 5.6. SN Ratio of Transformability 139 5.7. SN Ratio in Electric Characteristics 140 5.8. Chemical Reaction and Pharmacy 142 5.9. Development of the Mahalanobis–Taguchi System 142 5.10. Application of Simulation 144 5.11. Summary 147 References 150 5.1. Origin of Quality Engineering As an explanation of the origin of quality engineering in the post–World War II rehabilitation period in Japan, Genichi Taguchi said the following about his ex- periences at the Musashino Telecommunication Laboratory of the Nippon Tele- graph and Telephone Public Corporation in his book, My Way of Thinking [1]: It was in 1948 when the Telecommunication Laboratory was founded in the Ministry of Communications (later Ministry of Telecommunications). The Electrotechnical Laboratory, which had supported Japanese communication and electrical research so far, was dissolved and developed into the Telecommunication Laboratory, focused on studying telecommunications. Behind the scenes, there existed a strong intention of the Common Communication Support (CCS) of the General Headquarters (GHQ). As soon as The CSS entered into Japan, it started to investigate the communica- tional situation in Japan.
    [Show full text]
  • History of Taguchi's Quality Engineering in the United States
    History of Taguchi’s Quality Engineering 6 in the United States 6.1. Introduction 153 ECL and India in the 1950s 154 Princeton University, Bell Laboratory, and Aoyama Gakuin University 155 6.2. The Beginning, 1980–1984 156 Bell Laboratories 156 Ford Motor Company 157 Xerox 158 6.3. Second Period: Applications to Quality Problem Solving, 1984–1992 158 6.4. Third Period: Applications to Product/Process Optimization, 1992–2000 161 6.5. Fourth Period: Institutionalization of Robust Engineering, 2000–Present 164 6.1. Introduction Genichi Taguchi was born in 1924 in Tokamachi, Niigata prefecture, 120 miles north of Tokyo. His father died when he was 10 years old, leaving him with a hard- working mother, Fusaji, and three younger brothers. Tokamachi has been very famous for centuries for the production of Japanese kimonos. Just about every household had a family business with a weaving machine to produce kimonos. As the oldest boy in the family, Taguchi’s intention was to succeed with the family business of kimono production. Genichi’s grandmother, Tomi Kokai, was known for her knowledge of how to raise silkworms to produce the high-quality silk used in kimono production. In the old days in Japan, it was very unusual for a woman to be a well-respected technical consultant. It is interesting that her grandson later became one of the most suc- cessful consultants in product development, traveling internationally. Genichi attended Kiryu Technical College, majoring in textile engineering. However, by the time he returned to his hometown in 1943, the Japanese govern- ment had requisitioned all the weaving machines in Tokamachi for use in weapons Taguchi’s Quality Engineering Handbook.
    [Show full text]
  • Optimization of Process Parameters in Sheet Metal Forming by Using Taguchi Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UMP Institutional Repository OPTIMIZATION OF PROCESS PARAMETERS IN SHEET METAL FORMING BY USING TAGUCHI METHOD MOHD AMIRUZAMIN B MOHD SHAUFI UNIVERSITI MALAYSIA PAHANG OPTIMIZATION OF PROCESS PARAMETERS IN SHEET METAL FORMING BY USING TAGUCHI METHOD MOHD AMIRUZAMIN BIN MOHD SHAUFI A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing Engineering Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG NOVEMBER 2008 SUPERVISOR DECLARATION We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing. Signature : Name of Supervisor : Position : Date : Signature : Name of Panel : Position : Date : STUDENT’S DECLARATION I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree. Signature : Name : ID Number : Date : Dedicated to my beloved father, mother, sister, and brothers ACKNOWLEDGEMENTS Bismillahirrahmanirrahim…. Thanks Allah s.w.t because lastly I have already finished my final year project. To my supervisor, Madam Salwani binti Mohd Salleh , tahnks for all your guidance, support and time for me to finished my project. Without her motivation, I could not finish this paper as presented here. Your duty I cannot forget. Special thanks to Madam Noraini because helping me in learning STATISTICA software including Mohd Adzwan, my friend for sharing his knowledge about the software.
    [Show full text]
  • Interview with Genichi Taguchi Dr
    Nova Southeastern University NSUWorks 'An Immigrant's Gift': Interviews about the Life and NSU Digital Collections Impact of Dr. Joseph M. Juran 3-19-1992 Interview with Genichi Taguchi Dr. Joseph M. Juran Collection Follow this and additional works at: https://nsuworks.nova.edu/juran-transcripts Part of the Business Administration, Management, and Operations Commons, Management Sciences and Quantitative Methods Commons, Operations and Supply Chain Management Commons, Organizational Behavior and Theory Commons, and the Strategic Management Policy Commons NSUWorks Citation Dr. Joseph M. Juran Collection, "Interview with Genichi Taguchi" (1992). 'An Immigrant's Gift': Interviews about the Life and Impact of Dr. Joseph M. Juran. 8. https://nsuworks.nova.edu/juran-transcripts/8 This Transcript is brought to you for free and open access by the NSU Digital Collections at NSUWorks. It has been accepted for inclusion in 'An Immigrant's Gift': Interviews about the Life and Impact of Dr. Joseph M. Juran by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Genichi Taguchi (Interviewed on 19 March, Tokyo, Japan) Video Roll # 23 Q: Dr. Taguchi, in English, say your name and also would you spell it. TAGUCHI: My name is Taguchi. T-A-G-U-C-H-I. Q: Your first name? TAGUCHI: G-E-N-I-C-H-I. Q: Is there a title or a position that should be used with your name to identify you? T AGUCHI: Actually, I work for three organizations: one is Ohken Associate. I can give you my card. And the second card, I work also at TSA (?).
    [Show full text]