A PRACTICAL APPROACH to GAIT PROBLEMS Gualtiero Gandini
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approach to a Patient with Hemiplegia and Monoplegia
CHAPTER Approach to a Patient with Hemiplegia and Monoplegia 27 Sudhir Kumar, Subhash Kaul INTRODUCTION 4. Injury to multiple cervical nerve roots. Monoplegia and hemiplegia are common neurological 5. Functional or psychogenic. symptoms in patients presenting to the emergency department as well as outpatient department. Insidious onset, gradually progressive monoplegia affecting lower limb can be caused by the following Monoplegia refers to weakness of one limb (either arm or conditions: leg) and hemiplegia refers to weakness of one arm and leg on the same side of body (either left or right side). 1. Tumor of the contralateral frontal lobe. There are a variety of underlying causes for monoplegia 2. Tumor of spinal cord at thoracic or lumbar level. and hemiplegia. The causes differ in different age groups. 3. Chronic infection of brain (frontal lobe) or spinal The causes also differ depending on the onset, progression cord (thoracic or lumbar level), such as tuberculous. and duration of weakness. Therefore, one needs to adopt a systematic approach during history taking and 4. Lumbosacral-plexopathy, due to diabetes mellitus. examination in order to arrive at the correct diagnosis. Insidious onset, gradually progressive monoplegia, Appropriate investigations after these would confirm the affecting upper limb, can be caused by one of the following diagnosis. conditions: The aim of this chapter is to systematically look at the 1. Tumor of the contralateral parietal lobe. differential diagnosis of monoplegia and hemiplegia and outline the approach needed to pinpoint the exact 2. Compressive lesion (tumor, large disc, etc) in underlying cause. cervical cord region. 3. Chronic infection of the brain (parietal lobe) or APPROACH TO THE DIAGNOSIS OF MONOPLEGIA spinal cord (cervical region), such as tuberculous. -
Myelopathy—Paresis and Paralysis in Cats
Myelopathy—Paresis and Paralysis in Cats (Disorder of the Spinal Cord Leading to Weakness and Paralysis in Cats) Basics OVERVIEW • “Myelopathy”—any disorder or disease affecting the spinal cord; a myelopathy can cause weakness or partial paralysis (known as “paresis”) or complete loss of voluntary movements (known as “paralysis”) • Paresis or paralysis may affect all four limbs (known as “tetraparesis” or “tetraplegia,” respectively), may affect only the rear legs (known as “paraparesis” or “paraplegia,” respectively), the front and rear leg on the same side (known as “hemiparesis” or “hemiplegia,” respectively) or only one limb (known as “monoparesis” or “monoplegia,” respectively) • Paresis and paralysis also can be caused by disorders of the nerves and/or muscles to the legs (known as “peripheral neuromuscular disorders”) • The spine is composed of multiple bones with disks (intervertebral disks) located in between adjacent bones (vertebrae); the disks act as shock absorbers and allow movement of the spine; the vertebrae are named according to their location—cervical vertebrae are located in the neck and are numbered as cervical vertebrae one through seven or C1–C7; thoracic vertebrae are located from the area of the shoulders to the end of the ribs and are numbered as thoracic vertebrae one through thirteen or T1–T13; lumbar vertebrae start at the end of the ribs and continue to the pelvis and are numbered as lumbar vertebrae one through seven or L1–L7; the remaining vertebrae are the sacral and coccygeal (tail) vertebrae • The brain -
Absence of Neurobehavioral Disturbance in a Focal Lesion of the Left Paracentral Lobule
Behavioural Neurology (1992), 5,189-191 ICASE REPORTI Absence of neurobehavioral disturbance in a focal lesion of the left paracentral lobule T. Imamura and K. Tsuburaya Department of Neurology, Tohoku Kohseinenkin Hospital, Sendai, Japan Correspondence to: T. Imamura, Department of Neurology, Institute of Brain Diseases, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-Ku, Sendai 980, Japan The case of a right-handed woman with an infarcation confined to the left paracentral lobule and sparing the supplementary motor area (SMA) is reported. She presented with a right leg monoplegia and displayed no mutism. The absence of any associ ated neurobehavioral disturbances (mutism, forced grasping, reduced spontaneous arm activity or aphasia raises the possi bility that the left SMA has discrete neurobehavioral functions. Keywords: Medial frontal lobe - Precentral gyrus - Supplementary motor area - Transcortical motor aphasia INTRODUCTION Various kinds of neurobehavioral disturbances associated medial part of the left precentral gyrus, which is adjacent with left medial frontal lesions involving the supplemen to the SMA, to evaluate its possible neurobehavioral tary motor area (SMA) have been reported. Aphasia due to functions. damage of the left medial frontal lobe is characterized by an initial period of mutism followed by a stage of CASE REPORT decreased verbal output and spontaneous initiation with normal articulation (Stuss and Benson, 1986). Forced A 73-year-old right-handed woman with a history of grasping, compulsive manipulation of tools and decreased hypertension and diabetes mellitus suddenly developed a spontaneous limb movements have also been described gait disturbance. On examination, 24 h later, she was alert (Wise, 1984; Feinberg et al., 1992). -
ICD9 & ICD10 Neuromuscular Codes
ICD-9-CM and ICD-10-CM NEUROMUSCULAR DIAGNOSIS CODES ICD-9-CM ICD-10-CM Focal Neuropathy Mononeuropathy G56.00 Carpal tunnel syndrome, unspecified Carpal tunnel syndrome 354.00 G56.00 upper limb Other lesions of median nerve, Other median nerve lesion 354.10 G56.10 unspecified upper limb Lesion of ulnar nerve, unspecified Lesion of ulnar nerve 354.20 G56.20 upper limb Lesion of radial nerve, unspecified Lesion of radial nerve 354.30 G56.30 upper limb Lesion of sciatic nerve, unspecified Sciatic nerve lesion (Piriformis syndrome) 355.00 G57.00 lower limb Meralgia paresthetica, unspecified Meralgia paresthetica 355.10 G57.10 lower limb Lesion of lateral popiteal nerve, Peroneal nerve (lesion of lateral popiteal nerve) 355.30 G57.30 unspecified lower limb Tarsal tunnel syndrome, unspecified Tarsal tunnel syndrome 355.50 G57.50 lower limb Plexus Brachial plexus lesion 353.00 Brachial plexus disorders G54.0 Brachial neuralgia (or radiculitis NOS) 723.40 Radiculopathy, cervical region M54.12 Radiculopathy, cervicothoracic region M54.13 Thoracic outlet syndrome (Thoracic root Thoracic root disorders, not elsewhere 353.00 G54.3 lesions, not elsewhere classified) classified Lumbosacral plexus lesion 353.10 Lumbosacral plexus disorders G54.1 Neuralgic amyotrophy 353.50 Neuralgic amyotrophy G54.5 Root Cervical radiculopathy (Intervertebral disc Cervical disc disorder with myelopathy, 722.71 M50.00 disorder with myelopathy, cervical region) unspecified cervical region Lumbosacral root lesions (Degeneration of Other intervertebral disc degeneration, -
Clinical Decision Making in Neurology
CLINICAL DECISION MAKING IN NEUROLOGY The Neurological Examination The goals of the neurological examination are to detect the presence of a neurologic disease and to determine the location of the lesion within the nervous system. The neurologic examination should be performed in a systematic manner in order to assure that the animal's neurologic status is completely evaluated. The parts of a customary neurologic examination include evaluation of the head (mentation and cranial nerves), gait, limbs (postural reactions and spinal reflexes) and pain/nociception (normal and abnormal pain responses). Gait Evaluation I find gait evaluation the most useful and important part of the neurologic exam. Clinical evaluation of gait usually involves observation of the animal's movements while walking. This is best accomplished by having a handler walk the animal over a flat, non-slippery area. I typically evaluate gait by having a handler walk the animal approximately 100 feet, away and back, as well as circling clockwise and counterclockwise. I have the animal short on the leash and under good control and have the dog typically walk slowly. I may have them walk on and off the curb. Overall, evaluation is made by watching for paresis, ataxia, stride length, lameness, stiffness, spasticity, dysmetria and shuffling or scuffing of limbs or digits. I also note position of head and tail during gait evaluation. Gait analysis is broken down between the axial and appendicular skeleton. The axial vertebral column is made up of many joints and is divided into anatomical segments. The axial portion includes the head, neck, thoracic, lumbar, lumbar/pelvic and tail. -
Neurological Principles and Rehabilitation of Action Disorders
Neurorehabilitation and Neural Repair Neurological Principles and Rehabilitation Supplement to 25(5) 21 S-32S ©TheAuthor(s) 2011 Reprints and permission: http://www. of Action Disorders: Common sagepub.com/journalsPermissions.nav 001: 10.1177/1545968311410941 Clinical Deficits http://nnr.sagepub.com ~SAGE I 3 K. Sathian, MO, PhO , Laurel J. Buxbaum, Psy02, Leonardo G. Cohen, M0 , 4 6 John W. Krakauer, M0 , Catherine E. Lang, PhO\ Maurizio Corbetta, M0 , 6 and Susan M. Fitzpatrick, Ph0 ,7 In this chapter, the authors use the computation, anatomy, and physiology (CAP) principles to consider the impact of common clinical problems on action They focus on 3 major syndromes: paresis, apraxia, and ataxiaThey also review mechanisms that could account for spontaneous recovery, using what is known about the best-studied clinical dysfunction-paresis-and also ataxia. Together, this and the previous chapter lay the groundwork for the third chapter in this series, which reviews the relevant rehabilitative interventions. Paresis may tilt as it is raised or a key may fall from the fingers. Once Phenomenology the object is in hand, a person with paresis has difficulty mov ing it to some locations. Lifting the cup to the mouth, where The most common motor disorder experienced by individuals the ann movement is close to and directly in front of the body, after central nervous system damage is paresis. In the strictest is usually much easier than lifting the cup to a shoulder-height sense, paresis is the reduced ability to voluntarily activate the shelf on the opposite side of the body. Reaching movements spinal motor neurons. -
Hemiballismus: /Etiology and Surgical Treatment by Russell Meyers, Donald B
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.13.2.115 on 1 May 1950. Downloaded from J. Neurol. Neurosurg. Psychiat., 1950, 13, 115. HEMIBALLISMUS: /ETIOLOGY AND SURGICAL TREATMENT BY RUSSELL MEYERS, DONALD B. SWEENEY, and JESS T. SCHWIDDE From the Division of Neurosurgery, State University of Iowa, College ofMedicine, Iowa City, Iowa Hemiballismus is a relatively uncommon hyper- 1949; Whittier). A few instances are on record in kinesia characterized by vigorous, extensive, and which the disorder has run an extended chronic rapidly executed, non-patterned, seemingly pur- course (Touche, 1901 ; Marcus and Sjogren, 1938), poseless movements involving one side of the body. while in one case reported by Lea-Plaza and Uiberall The movements are almost unceasing during the (1945) the abnormal movements are said to have waking state and, as with other hyperkinesias con- ceased spontaneously after seven weeks. Hemi- sidered to be of extrapyramidal origin, they cease ballismus has also been known to cease following during sleep. the supervention of a haemorrhagic ictus. Clinical Aspects Terminology.-There appears to be among writers on this subject no agreement regarding the precise Cases are on record (Whittier, 1947) in which the Protected by copyright. abnormal movements have been confined to a single features of the clinical phenomena to which the limb (" monoballismus ") or to both limbs of both term hemiballismus may properly be applied. sides (" biballismus ") (Martin and Alcock, 1934; Various authors have credited Kussmaul and Fischer von Santha, 1932). In a majority of recorded (1911) with introducing the term hemiballismus to instances, however, the face, neck, and trunk as well signify the flinging or flipping character of the limb as the limbs appear to have been involved. -
The Clinical Approach to Movement Disorders Wilson F
REVIEWS The clinical approach to movement disorders Wilson F. Abdo, Bart P. C. van de Warrenburg, David J. Burn, Niall P. Quinn and Bastiaan R. Bloem Abstract | Movement disorders are commonly encountered in the clinic. In this Review, aimed at trainees and general neurologists, we provide a practical step-by-step approach to help clinicians in their ‘pattern recognition’ of movement disorders, as part of a process that ultimately leads to the diagnosis. The key to success is establishing the phenomenology of the clinical syndrome, which is determined from the specific combination of the dominant movement disorder, other abnormal movements in patients presenting with a mixed movement disorder, and a set of associated neurological and non-neurological abnormalities. Definition of the clinical syndrome in this manner should, in turn, result in a differential diagnosis. Sometimes, simple pattern recognition will suffice and lead directly to the diagnosis, but often ancillary investigations, guided by the dominant movement disorder, are required. We illustrate this diagnostic process for the most common types of movement disorder, namely, akinetic –rigid syndromes and the various types of hyperkinetic disorders (myoclonus, chorea, tics, dystonia and tremor). Abdo, W. F. et al. Nat. Rev. Neurol. 6, 29–37 (2010); doi:10.1038/nrneurol.2009.196 1 Continuing Medical Education online 85 years. The prevalence of essential tremor—the most common form of tremor—is 4% in people aged over This activity has been planned and implemented in accordance 40 years, increasing to 14% in people over 65 years of with the Essential Areas and policies of the Accreditation Council age.2,3 The prevalence of tics in school-age children and for Continuing Medical Education through the joint sponsorship of 4 MedscapeCME and Nature Publishing Group. -
HCC Risk Adjustment Terminology: • HCC • CCV • AHA • RAF Score / Risk Score What Is Risk Adjustment?
HCC Risk Adjustment Terminology: • HCC • CCV • AHA • RAF Score / Risk Score What is Risk Adjustment? Who? What? Why? How? Redistributes Actuarial risk funds from plans Medicare To protect against based on with lower-risk Advantage Plans, adverse selection enrollees’ enrollees to plans Health Insurance and risk selection individual risk with higher-risk Exchanges, scores others enrollees RAF Calculation Demographic Health RAF Information StatusHealth Status Score Risk Score Higher risk scores represent members with a higher disease burden resulting in appropriately higher reimbursement. Lower risk scores represent a healthier population, but may also be due to: • Poor chart documentation • Poor diagnosis coding Why is this important? • Results in appropriate reimbursement • Augments the overall patient evaluation process • Allows us to stratify patients by risk • Metric for considering panel size, productivity, access, and coding education efforts Current Scope: Attributed Downside Plan Gain Share Lives Risk NGACO 24,876 80%/6.5 80%/6.5 91.5%- MCW 3,785 100% 100.65% Healthy 91.5%- 4,163 100% Saver 100.65% MA 16,561 50% TBD Current State: HCP-LAN APM Framework Category 3A: 83% Category 3B: 17% FFS APM HCC Risk Model • Diagnosis codes with RAF values are grouped into Condition Categories. • Diseases within a Condition Category are clinically related and are similar in respect to cost patterns. HCC Description Applicable Diagnoses to HCC Category RAF 111 Chronic Obstructive COPD Emphysema 0.346 Pulmonary Disease Chronic Bronchitis 108 Vascular Disease Atherosclerosis (of native or PVD 0.299 bypass grafts with or without Phlebitis and Thrombophlebitis complications [rest pain, (acute or chronic) claudication, etc]) Embolism of Veins (acute or Aortic Aneurysm chronic) (nonruptured) Diabetic Peripheral Angiopathy Arterial Aneurysm • There are 79 identified Condition Categories in 2018. -
Athlete Info
Name: DOB: HT: WT: M/F: Classification: Handler: Misc: BACKGROUND: Please provide us with the following information regarding your impairment in order for us to be better prepared to meet your needs and create a better learning experience. Q1. Using the attached Graphical Representation and Profiles List, please describe your impairment using a Profile number and marking the appropriate graphical representation (from ITU Paratriathlon Classification Rules and Regulations 2012 Edition). Please do your best and any questions we can answer at the camp. If you feel you fall under more than one profile, please include all that apply. Profile: ______ Q2. How long have you had this impairment: Birth: ______ Age: _______ / Reason: ___________ Additional comments: ________________________________________________________________ Q3. Type of prosthesis using for racing and/or training; please check which apply: a) Upper Limb (above elbow/below elbow): Cosmetic _____ Body-powered (cable controlled):_____: Externally powered (myoelectric, switch-controlled prostheses):_____ Hybrid : Cable to elbow or terminal device and battery powered: ___________ Excursion to elbow and battery-powered terminal device: __________ CONFIDENTIA Excursion to terminal device and battery-powered elbow: __________ Additional comments: _________________________________________________ b) Lower Limb (There are many types available, please specify): 1 Type of AK prosthesis: Type of BK prosthesis: Type of Foot: CONFIDENTIA 2 Q4. Training experience: - Do you use a heart rate -
Progressive Supranuclear Palsy: Clinicopathological Concepts and Diagnostic Challenges
Review Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges David R Williams, Andrew J Lees Lancet Neurol 2009; 8: 270–79 Progressive supranuclear palsy (PSP) is a clinical syndrome comprising supranuclear palsy, postural instability, and Faculty of Medicine mild dementia. Neuropathologically, PSP is defi ned by the accumulation of neurofi brillary tangles. Since the fi rst (Neurosciences), Monash description of PSP in 1963, several distinct clinical syndromes have been described that are associated with PSP; this University, Melbourne, discovery challenges the traditional clinicopathological defi nition and complicates diagnosis in the absence of a reliable, Australia (D R Williams FRACP); Reta Lila Weston Institute of disease-specifi c biomarker. We review the emerging nosology in this fi eld and contrast the clinical and pathological Neurological Studies, characteristics of the diff erent disease subgroups. These new insights emphasise that the pathological events and University College London, processes that lead to the accumulation of phosphorylated tau protein in the brain are best considered as dynamic London, UK (A J Lees FRCP, processes that can develop at diff erent rates, leading to diff erent clinical phenomena. Moreover, for patients for whom D R Williams); and Queen Square Brain Bank for the diagnosis is unclear, clinicians must continue to describe accurately the clinical picture of each individual, rather Neurological Disorders, than label them with inaccurate diagnostic categories, such as atypical parkinsonism or PSP mimics. In this way, the University College London, development of the clinical features can be informative in assigning less common nosological categories that give clues London, UK (A J Lees) to the underlying pathology and an understanding of the expected clinical course. -
Assessment of Acute Motor Deficit in the Pediatric Emergency Room
J Pediatr (Rio J). 2017;93(s1):26---35 www.jped.com.br REVIEW ARTICLE Assessment of acute motor deficit in the pediatric ଝ emergency room a,∗ b a Marcio Moacyr Vasconcelos , Luciana G.A. Vasconcelos , Adriana Rocha Brito a Universidade Federal Fluminense (UFF), Hospital Universitário Antônio Pedro, Departamento Materno Infantil, Niterói, RJ, Brazil b Associac¸ão Brasileira Beneficente de Reabilitac¸ão (ABBR), Divisão de Pediatria, Rio de Janeiro, RJ, Brazil Received 21 May 2017; accepted 28 May 2017 Available online 27 July 2017 KEYWORDS Abstract Objectives: This review article aimed to present a clinical approach, emphasizing the diagnostic Acute weakness; investigation, to children and adolescents who present in the emergency room with acute-onset Motor deficit; Guillain---Barré muscle weakness. syndrome; Sources: A systematic search was performed in PubMed database during April and May 2017, using the following search terms in various combinations: ‘‘acute,’’ ‘‘weakness,’’ ‘‘motor Transverse myelitis; Child deficit,’’ ‘‘flaccid paralysis,’’ ‘‘child,’’ ‘‘pediatric,’’ and ‘‘emergency’’. The articles chosen for this review were published over the past ten years, from 1997 through 2017. This study assessed the pediatric age range, from 0 to 18 years. Summary of the data: Acute motor deficit is a fairly common presentation in the pedi- atric emergency room. Patients may be categorized as having localized or diffuse motor impairment, and a precise description of clinical features is essential in order to allow a complete differential diagnosis. The two most common causes of acute flaccid paralysis in the pediatric emergency room are Guillain---Barré syndrome and transverse myeli- tis; notwithstanding, other etiologies should be considered, such as acute disseminated encephalomyelitis, infectious myelitis, myasthenia gravis, stroke, alternating hemiplegia of childhood, periodic paralyses, brainstem encephalitis, and functional muscle weakness.