Compactness and Contradiction Terence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cauchy, Infinitesimals and Ghosts of Departed Quantifiers 3
CAUCHY, INFINITESIMALS AND GHOSTS OF DEPARTED QUANTIFIERS JACQUES BAIR, PIOTR BLASZCZYK, ROBERT ELY, VALERIE´ HENRY, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TARAS KUDRYK, SEMEN S. KUTATELADZE, THOMAS MCGAFFEY, THOMAS MORMANN, DAVID M. SCHAPS, AND DAVID SHERRY Abstract. Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson’s frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz’s distinction be- tween assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robin- son’s framework, while Leibniz’s law of homogeneity with the im- plied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide paral- lel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz’s infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Eu- ler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infi- nite exponent. Such procedures have immediate hyperfinite ana- logues in Robinson’s framework, while in a Weierstrassian frame- work they can only be reinterpreted by means of paraphrases de- parting significantly from Euler’s own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson’s framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of de- arXiv:1712.00226v1 [math.HO] 1 Dec 2017 parted quantifiers in his work. -
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3
Accessing Bernoulli-Numbers by Matrix-Operations Gottfried Helms 3'2006 Version 2.3 Accessing Bernoulli-Numbers by Matrixoperations ........................................................................ 2 1. Introduction....................................................................................................................................................................... 2 2. A common equation of recursion (containing a significant error)..................................................................................... 3 3. Two versions B m and B p of bernoulli-numbers? ............................................................................................................... 4 4. Computation of bernoulli-numbers by matrixinversion of (P-I) ....................................................................................... 6 5. J contains the eigenvalues, and G m resp. G p contain the eigenvectors of P z resp. P s ......................................................... 7 6. The Binomial-Matrix and the Matrixexponential.............................................................................................................. 8 7. Bernoulli-vectors and the Matrixexponential.................................................................................................................... 8 8. The structure of the remaining coefficients in the matrices G m - and G p........................................................................... 9 9. The original problem of Jacob Bernoulli: "Powersums" - from G -
Ergodicity and Metric Transitivity
Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0. -
Fermat, Leibniz, Euler, and the Gang: the True History of the Concepts Of
FERMAT, LEIBNIZ, EULER, AND THE GANG: THE TRUE HISTORY OF THE CONCEPTS OF LIMIT AND SHADOW TIZIANA BASCELLI, EMANUELE BOTTAZZI, FREDERIK HERZBERG, VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, TAHL NOWIK, DAVID SHERRY, AND STEVEN SHNIDER Abstract. Fermat, Leibniz, Euler, and Cauchy all used one or another form of approximate equality, or the idea of discarding “negligible” terms, so as to obtain a correct analytic answer. Their inferential moves find suitable proxies in the context of modern the- ories of infinitesimals, and specifically the concept of shadow. We give an application to decreasing rearrangements of real functions. Contents 1. Introduction 2 2. Methodological remarks 4 2.1. A-track and B-track 5 2.2. Formal epistemology: Easwaran on hyperreals 6 2.3. Zermelo–Fraenkel axioms and the Feferman–Levy model 8 2.4. Skolem integers and Robinson integers 9 2.5. Williamson, complexity, and other arguments 10 2.6. Infinity and infinitesimal: let both pretty severely alone 13 3. Fermat’s adequality 13 3.1. Summary of Fermat’s algorithm 14 arXiv:1407.0233v1 [math.HO] 1 Jul 2014 3.2. Tangent line and convexity of parabola 15 3.3. Fermat, Galileo, and Wallis 17 4. Leibniz’s Transcendental law of homogeneity 18 4.1. When are quantities equal? 19 4.2. Product rule 20 5. Euler’s Principle of Cancellation 20 6. What did Cauchy mean by “limit”? 22 6.1. Cauchy on Leibniz 23 6.2. Cauchy on continuity 23 7. Modern formalisations: a case study 25 8. A combinatorial approach to decreasing rearrangements 26 9. -
Defining Physics at Imaginary Time: Reflection Positivity for Certain
Defining physics at imaginary time: reflection positivity for certain Riemannian manifolds A thesis presented by Christian Coolidge Anderson [email protected] (978) 204-7656 to the Department of Mathematics in partial fulfillment of the requirements for an honors degree. Advised by Professor Arthur Jaffe. Harvard University Cambridge, Massachusetts March 2013 Contents 1 Introduction 1 2 Axiomatic quantum field theory 2 3 Definition of reflection positivity 4 4 Reflection positivity on a Riemannian manifold M 7 4.1 Function space E over M ..................... 7 4.2 Reflection on M .......................... 10 4.3 Reflection positive inner product on E+ ⊂ E . 11 5 The Osterwalder-Schrader construction 12 5.1 Quantization of operators . 13 5.2 Examples of quantizable operators . 14 5.3 Quantization domains . 16 5.4 The Hamiltonian . 17 6 Reflection positivity on the level of group representations 17 6.1 Weakened quantization condition . 18 6.2 Symmetric local semigroups . 19 6.3 A unitary representation for Glor . 20 7 Construction of reflection positive measures 22 7.1 Nuclear spaces . 23 7.2 Construction of nuclear space over M . 24 7.3 Gaussian measures . 27 7.4 Construction of Gaussian measure . 28 7.5 OS axioms for the Gaussian measure . 30 8 Reflection positivity for the Laplacian covariance 31 9 Reflection positivity for the Dirac covariance 34 9.1 Introduction to the Dirac operator . 35 9.2 Proof of reflection positivity . 38 10 Conclusion 40 11 Appendix A: Cited theorems 40 12 Acknowledgments 41 1 Introduction Two concepts dominate contemporary physics: relativity and quantum me- chanics. They unite to describe the physics of interacting particles, which live in relativistic spacetime while exhibiting quantum behavior. -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
ERGODIC THEORY and ENTROPY Contents 1. Introduction 1 2
ERGODIC THEORY AND ENTROPY JACOB FIEDLER Abstract. In this paper, we introduce the basic notions of ergodic theory, starting with measure-preserving transformations and culminating in as a statement of Birkhoff's ergodic theorem and a proof of some related results. Then, consideration of whether Bernoulli shifts are measure-theoretically iso- morphic motivates the notion of measure-theoretic entropy. The Kolmogorov- Sinai theorem is stated to aid in calculation of entropy, and with this tool, Bernoulli shifts are reexamined. Contents 1. Introduction 1 2. Measure-Preserving Transformations 2 3. Ergodic Theory and Basic Examples 4 4. Birkhoff's Ergodic Theorem and Applications 9 5. Measure-Theoretic Isomorphisms 14 6. Measure-Theoretic Entropy 17 Acknowledgements 22 References 22 1. Introduction In 1890, Henri Poincar´easked under what conditions points in a given set within a dynamical system would return to that set infinitely many times. As it turns out, under certain conditions almost every point within the original set will return repeatedly. We must stipulate that the dynamical system be modeled by a measure space equipped with a certain type of transformation T :(X; B; m) ! (X; B; m). We denote the set we are interested in as B 2 B, and let B0 be the set of all points in B that return to B infinitely often (meaning that for a point b 2 B, T m(b) 2 B for infinitely many m). Then we can be assured that m(B n B0) = 0. This result will be proven at the end of Section 2 of this paper. In other words, only a null set of points strays from a given set permanently. -
Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1996 Sums of Powers and the Bernoulli Numbers Laura Elizabeth S. Coen Eastern Illinois University This research is a product of the graduate program in Mathematics and Computer Science at Eastern Illinois University. Find out more about the program. Recommended Citation Coen, Laura Elizabeth S., "Sums of Powers and the Bernoulli Numbers" (1996). Masters Theses. 1896. https://thekeep.eiu.edu/theses/1896 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is rece1v1ng a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. u Author uate I respectfully request Booth Library of Eastern Illinois University not allow my thesis -
The Structure of Bernoulli Numbers
The structure of Bernoulli numbers Bernd C. Kellner Abstract We conjecture that the structure of Bernoulli numbers can be explicitly given in the closed form n 2 −1 −1 n−l −1 −1 Bn = (−1) |n|p |p (χ(p,l) − p−1 )|p p p,l ∈ irr p−1∤n ( ) Ψ1 p−1|n Y n≡l (modY p−1) Y irr where the χ(p,l) are zeros of certain p-adic zeta functions and Ψ1 is the set of irregular pairs. The more complicated but improbable case where the conjecture does not hold is also handled; we obtain an unconditional structural formula for Bernoulli numbers. Finally, applications are given which are related to classical results. Keywords: Bernoulli number, Kummer congruences, irregular prime, irregular pair of higher order, Riemann zeta function, p-adic zeta function Mathematics Subject Classification 2000: 11B68 1 Introduction The classical Bernoulli numbers Bn are defined by the power series ∞ z zn = B , |z| < 2π , ez − 1 n n! n=0 X where all numbers Bn are zero with odd index n > 1. The even-indexed rational 1 1 numbers Bn alternate in sign. First values are given by B0 = 1, B1 = − 2 , B2 = 6 , 1 arXiv:math/0411498v1 [math.NT] 22 Nov 2004 B4 = − 30 . Although the first numbers are small with |Bn| < 1 for n = 2, 4,..., 12, these numbers grow very rapidly with |Bn|→∞ for even n →∞. For now, let n be an even positive integer. An elementary property of Bernoulli numbers is the following discovered independently by T. Clausen [Cla40] and K. -
Tight Bounds on the Mutual Coherence of Sensing Matrices for Wigner D-Functions on Regular Grids
Tight bounds on the mutual coherence of sensing matrices for Wigner D-functions on regular grids Arya Bangun, Arash Behboodi, and Rudolf Mathar,∗ October 7, 2020 Abstract Many practical sampling patterns for function approximation on the rotation group utilizes regu- lar samples on the parameter axes. In this paper, we relate the mutual coherence analysis for sensing matrices that correspond to a class of regular patterns to angular momentum analysis in quantum mechanics and provide simple lower bounds for it. The products of Wigner d-functions, which ap- pear in coherence analysis, arise in angular momentum analysis in quantum mechanics. We first represent the product as a linear combination of a single Wigner d-function and angular momentum coefficients, otherwise known as the Wigner 3j symbols. Using combinatorial identities, we show that under certain conditions on the bandwidth and number of samples, the inner product of the columns of the sensing matrix at zero orders, which is equal to the inner product of two Legendre polynomials, dominates the mutual coherence term and fixes a lower bound for it. In other words, for a class of regular sampling patterns, we provide a lower bound for the inner product of the columns of the sensing matrix that can be analytically computed. We verify numerically our theoretical results and show that the lower bound for the mutual coherence is larger than Welch bound. Besides, we provide algorithms that can achieve the lower bound for spherical harmonics. 1 Introduction In many applications, the goal is to recover a function defined on a group, say on the sphere S2 and the rotation group SO(3), from only a few samples [1{5]. -
A Semifilter Approach to Selection Principles II: Τ
A semifilter approach to selection principles II: τ ∗-covers Lyubomyr Zdomskyy September 3, 2018 Abstract Developing the ideas of [23] we show that every Menger topological space ∗ has the property Sfin(O, T ) provided (u < g), and every space with the ∗ + ℵ0 property Sfin(O, T ) is Hurewicz provided (Depth ([ω] ) ≤ b). Combin- ing this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties P and Q [do not] coincide, P Q ∗ where and run over Sfin(O, Γ), Sfin(O, T), Sfin(O, T ), Sfin(O, Ω), and Sfin(O, O). Introduction Following [15] we say that a topological space X has the property Sfin(A, B), ω where A and B are collections of covers of X, if for every sequence (un)n∈ω ∈ A there exists a sequence (vn)n∈ω, where each vn is a finite subset of un, such that {∪vn : n ∈ ω}∈B. Throughout this paper “cover” means “open cover” and A is equal to the family O of all open covers of X. Concerning B, we shall also consider the collections Γ, T, T⋆, T∗, and Ω of all open γ-, τ-, τ ⋆, τ ∗-, and ω-covers of X. For technical reasons we shall use the collection Λ of countable large covers. The most natural way to define these types of covers uses the Marczewski “dictionary” map introduced in [13]. Given an indexed family u = {Un : n ∈ ω} of subsets of a set X and element x ∈ X, we define the Marczewski map µu : X → P(ω) arXiv:math/0510484v1 [math.GN] 22 Oct 2005 letting µu(x)= {n ∈ ω : x ∈ Un} (µu(x) is nothing else but Is(x, u) in notations ∗ of [23]). -
Arxiv:1905.10287V2 [Math.GN] 1 Jul 2019 .Bnnig,M Ave 1,M Aa 1]–[8,W Ut ..Miller A.W
Selectors for dense subsets of function spaces Lev Bukovsk´y, Alexander V. Osipov Institute of Mathematics, Faculty of Science, P.J. Saf´arikˇ University, Jesenn´a5, 040 01 Koˇsice, Slovakia Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, and Ural State University of Economics, Yekaterinburg, Russia Abstract ⋆ Let USCp(X) be the topological space of real upper semicontinuous bounded functions defined on X with the subspace topology of the product topology on X R. Φ˜ ↑, Ψ˜ ↑ are the sets of all upper sequentially dense, upper dense or pointwise ⋆ dense subsets of USCp(X), respectively. We prove several equivalent assertions ⋆ ˜ ↑ ˜ ↑ to that that USCp(X) satisfies the selection principles S1(Φ , Ψ ), including a condition on the topological space X. ⋆ We prove similar results for the topological space Cp(X) of continuous bounded functions. ↑ ↑ Similar results hold true for the selection principles Sfin(Φ˜ , Ψ˜ ). Keywords: Upper semicontinuous function, dense subset, sequentially dense subset, upper dense set, upper sequentially dense set, pointwise dense subset, covering propery S1, selection principle S1. 2010 MSC: 54C35, 54C20, 54D55. 1. Introduction We shall study the relationship between selection properties of covers of ⋆ a topological space X and selection properties of dense subsets of the set USCp(X) of all bounded upper semicontinuous functions on X and the set of all bounded ∗ continuous functions Cp (X) on X with the topology of pointwise convergence. arXiv:1905.10287v2 [math.GN] 1 Jul 2019 Similar problems were studied by M. Scheepers [21, 22], J. Haleˇs[7], A. Bella, M. Bonanzinga, M. Matveev [1], M. Sakai [16] – [18], W.