Sand Composition in the Bengal Basin, Bangladesh

Total Page:16

File Type:pdf, Size:1020Kb

Sand Composition in the Bengal Basin, Bangladesh Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal basin, Bangladesh Ashraf Uddin* Department of Geology and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 Neil Lundberg Department of Geology, Florida State University, Tallahassee, Florida 32306 ABSTRACT contain abundant argillitic and low- to The timing of initial collision of the Indian medium-grade metamorphic lithic fragments plate with Eurasia has been debated (Cochran, Stratigraphic sequences preserved in the and feldspar grains (Tipam: Qt61F19L19; Dupi 1990; Butler, 1995). Suggestions range from the Bengal basin provide detrital information Tila: Qt70F13L17), suggesting continued oro- Cretaceous-Tertiary boundary, on the basis of pa- that documents a significantly older history of genic unroofing. These younger sands are rich leomagnetic work (Klootwijk et al., 1992), to the eastern Himalaya than that available in potassium feldspar (P/F = 0.30, 0.20) relative various times in the Eocene (Rowley, 1996). An from Ocean Drilling Program and Deep Sea to plagioclase (P)-rich Bhuban and Boka Bil early Eocene collision between Asia and sedi- Drilling Project cores recovered from the sandstones (P/F = 0.66 and 0.48), suggesting a mentary rocks of the leading edge of India (a so- Bengal fan. The Bengal basin, formed as a re- granitic source, probably the Miocene called “soft” collision) at about the time of mag- sult of the Himalayan collision, is located at leucogranites of the High Himalayan Crys- netic anomaly 22 at 53 Ma is suggested on the the juncture of the Indian craton to the west, talline terrane. basis of a 50% decrease in spreading rates in the the Shillong massif and the Himalayan belt to These results document for the first time central Indian Ocean (Sclater and Fisher, 1974).A the north, and the Indo-Burman ranges to the contrasts in orogenic history recorded in the middle Eocene date is based on the similarity of east. Modal analyses of Eocene and Oligocene Bengal system vs. western Himalayan foreland mammalian fossils between India and Mongolia sandstones of the Cherra, Kopili, and Barail basins. Sands deposited in the Bengal basin are (Sahni and Kumar, 1974), and on paleomagnetic Formations document compositions that are generally more quartzose and less lithic than data and plate motions (Dewey et al., 1988).A late dominated by subangular monocrystalline those from the western Himalayan foreland Eocene collision has been proposed on the basis of quartz grains with scarce to no feldspar basins, and pre-Miocene strata in the Bengal radiometric dating of plutonic rocks of the Trans- grains, and few lithic fragments (Cherra and system show little to no evidence of orogenic (Tethys) Himalaya, inferred to represent the end Kopili: Qt99F1L0; Barail: Qt90F3L7; Qt—total activity. In part, this probably reflects west to of subduction of oceanic crust at the leading edge quartz, F—feldspar, L—lithic fragments). east progression of the Himalayan collision, of India (Honeggar et al., 1982; Petterson and These compositions are similar to sands de- but it probably also results from sedimentary Windley, 1985). Beck et al. (1995) suggested, on rived from the Indian craton, suggesting that systems propagating southward, ahead of the stratigraphic grounds, that initial collision they underwent intense chemical weathering, advancing mountain belt as it has been consum- occurred between 66 and 55.5 Ma; there is firm likely in a source with low relief and consider- ing the remnant ocean basin trapped between evidence of collision by 49 Ma (early–middle able transport. Himalayan tectonism during the Indian craton and the Burmese block. Eocene time).This is considerably earlier than the this time was probably significantly more dis- middle Miocene age, originally postulated by tant from the Bengal basin than at present. INTRODUCTION Gansser (1964), for initial uplift of the Himalaya. Sandstones of the Miocene Surma Group The collision between India and Eurasia did (Bhuban and Boka Bil Formations) are rich in The collisional history of the Himalayan not take place simultaneously along the entire feldspar grains, argillite, and very low-grade mountain chain, developed along a region once Himalayan belt (Dewey et al., 1989; Burchfiel, metamorphic lithic fragments (Bhuban: occupied by the west-northwest–south-southeast 1993). From 45 Ma to the present, India has ro- ° Qt66F15L19; Boka Bil: Qt57F23L20) relative to Tethys ocean, is recorded in sediments deposited tated 33 counterclockwise, the motion relative to older sandstones, suggesting onset of uplift and in subsiding foreland basins to the south (Burbank Asia having changed from predominantly north- erosional unroofing in the eastern Himalaya, et al., 1996), including the Bengal basin of east to more northerly, accompanied by a 50% re- and initiation of stream systems supplying oro- Bangladesh (Fig. 1). This basin is predominantly duction in velocity. Most geological information genic detritus to the Bengal basin. Sands of the a huge delta complex, covering about 144 000 constraining the timing of collision has been pro- upper Miocene to Pliocene Tipam Group and km2 onshore and 63 000 km2 offshore, and con- duced from the western portion of the system. the Pliocene–Pleistocene Dupi Tila Sandstone tains as much as 16 km of synorogenic Cenozoic The stratigraphic record of the collision has been sequences derived from the eastern Himalayas studied in some detail in the western Himalaya, *e-mail: [email protected] and the Indo-Burman ranges. beginning with the classic study of Krynine GSA Bulletin; April 1998; v. 110; no. 4; p. 497–511; 11 figures; 2 tables. 497 UDDIN AND LUNDBERG (1937); relatively few hard data on collisional from ODP and DSDP cores recovered from the Cenozoic time, and what do the changes ob- timing have been reported from the eastern Him- Bengal fan. Because of its location between the served suggest about orogenic processes? alayan foreland basin. Distal eastern equivalents eastern Himalaya and the Indo-Burman ranges, (2) What source-rock types are suggested by of the Siwalik sequences have been studied in the Bengal basin sequences contain detrital sedi- sandstone composition? (3) Can sandstone Bengal fan (Fig. 1), in seismic surveys (Curray, ments that yield information potentially relat- modal data help constrain the unroofing history 1991), and on two drilling legs (Deep Sea ing to the uplift and unroofing history of both of the eastern Himalaya, in particular the early Drilling Project [DSDP] Leg 22 and Ocean orogens. However, few detailed provenance stages of orogenesis, predating the record ob- Drilling Program [ODP] Leg 116; Ingersoll and studies have been carried out on the sediments tained from the Bengal fan? Suczek, 1979; Cochran, 1990; Amano and Taira, of the Bengal basin. Quantitative analyses of 1992). Drilling has recovered strata as old as sands derived from the developing mountain BORDERING OROGENS about 18 Ma, and detrital geochronology and iso- belt may help to evaluate the initiation and evo- topic studies of these strata indicate that orogen- lution of orogenic uplift and consequent ex- The 2500 by 300 km east-west Himalaya and esis had begun prior to this time (e.g., Copeland humation in this active continental collision. the 1500 by 230 km north-south Indo-Burman et al., 1990; France-Lanord et al., 1993, 1994). This paper reports the results of a petro- ranges formed as India collided with Eurasia and The Bengal basin, the land pathway that graphic investigation of Eocene through Pleis- the Burma platelet. The Himalayan belt is made links the Himalaya to the Bengal fan, is a mod- tocene sand and sandstone of the Bengal basin, up of four longitudinal lithotectonic units, juxta- ern collisional foreland basin that contains both in order to interpret the tectonic history of the posed along generally north-dipping thrust faults pretectonic and syntectonic stratigraphic se- eastern Himalayas and the Indo-Burman (Fig. 1). The lithologic and tectonic characteristics quences. These sequences provide detrital in- ranges. Specifically, this paper addresses the of these belts remain constant over long distances formation on the eastern Himalaya and record a following questions. (1) How has the composi- along strike (e.g., Gansser, 1964; Windley, 1983). significantly older history than that available tion of Bengal basin sandstones varied through From south to north, these units are (1) the Sub- Figure 1. Location map of Bengal basin and adjacent regions, showing lithotectonic belts of Himalayan and Indo-Burman orogens and loca- tions of units discussed in the text. Indian shield and Shillong Plateau expose Precambrian crystalline rocks. Deep Sea Drilling Project Sites 217 and 218 and area drilled by Ocean Drilling Program Leg 116 are shown on Bengal fan. Modified from Sengupta et al. (1990), Critelli and Garzanti (1994), and Uddin and Lundberg (1998). 498 Geological Society of America Bulletin, April 1998 SAND COMPOSITION IN THE BENGAL BASIN, BANGLADESH Himalaya, representing the Miocene to Pleisto- cene molasse deposits of the Siwaliks, separated from the Indo-Gangetic Plain by the Main Frontal thrust; (2) the Lower, or Lesser, Himalaya, which represent southward-directed thrusts and nappes composed of Precambrian and Paleozoic sedi- mentary rocks, crystalline rocks, and granites; (3) the Higher Himalaya, located north of the Main Central thrust, composed of schists, gneisses, and granites, and located across the Indus-Tsangpo suture; and (4) the Tethys Himalaya and Trans- Himalaya, representing fossiliferous Cambrian to Eocene sedimentary rocks (shallow-water depos- its, such as limestone, calcareous sandstone, and dolomite), batholiths, and volcanic rocks. The su- ture between India and Asia is marked by ophi- olitic rocks, and is located south of the Trans- Himalaya and locally adjacent to the Precambrian Central Gneiss of the Higher Himalayas (Jain and Kanwar, 1970). The Indo-Burman ranges are made up mainly of Cretaceous to Eocene pelagic strata overlain by thick Eocene to Oligocene tur- bidites and upper Miocene to Pleistocene mo- lasse (Fig.
Recommended publications
  • (Myanmar): Burman Arc Or Himalayan-Derived?
    Journal of the Geological Society, London, Vol. 165, 2008, pp. 1045–1057. Printed in Great Britain. Provenance of the Tertiary sedimentary rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-derived? R. ALLEN1,Y.NAJMAN1,A.CARTER2,D.BARFOD3,M.J.BICKLE4,H.J.CHAPMAN4, E. GARZANTI5,G.VEZZOLI5, S. ANDO` 5 &R.R.PARRISH6,7 1Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ, UK (e-mail: [email protected]) 2Research School of Earth Sciences, Birkbeck and University College London, Gower Street, London WC1E 6BT, UK 3Argon Isotope Laboratory, SUERC, East Kilbride, G75 0QF, UK 4Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ, UK 5Dipartimento di Scienze Geologiche e Geotecnologie, Universita Milano–Bicocca, Piazza della Scienza 4, 20126 Milano, Italy 6NIGL, BGS Keyworth, Nottingham NG12 5GG, UK 7Department of Geology, Leicester University, Leicester LE1 7RH, UK Abstract: The Indo-Burman Ranges in western Myanmar extend along the Sunda Arc subduction zone and may be divided into a western portion of Neogene sedimentary rocks and an eastern portion of Palaeogene sedimentary rocks, separated by the Kaladan Fault. Both Himalayan and Burman sources have been proposed for these sediments. Our thermochronological analyses on detrital grains, isotopic analyses on bulk rock, and petrographic and heavy mineral data indicate that the Palaeogene Indo-Burman Ranges contain a significant component of arc-derived material, interpreted as derived from the Burmese portion of the Mesozoic–Tertiary arc to the east. And older crustal component is also identifiable, which may have been sourced from the Himalaya or the Burmese margin.
    [Show full text]
  • Bangladesh Investigation (IR)BG-6 BG-6
    BG-6 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PROJECT REPORT Bangladesh Investigation (IR)BG-6 GEOLOGIC ASSESSMENT OF THE FOSSIL ENERGY POTENTIAL OF BANGLADESH By Mahlon Ball Edwin R. Landis Philip R. Woodside U.S. Geological Survey U.S. Geological Survey Open-File Report 83- ^ 0O Report prepared in cooperation with the Agency for International Developme U.S. Department of State. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. CONTENTS INTPDDUCTION...................................................... 1 REGIONAL GEOLOGY AND STRUCTURAL FRAMEWORK......................... 3 Bengal Basin................................................. 11 Bogra Slope.................................................. 12 Offshore..................................................... 16 ENERGY RESOURCE IDENTIFICATION............................."....... 16 Petroleum.................................................... 16 History of exploration.................................. 17 Reserves and production................................. 28 Natural gas........................................ 30 Recent developments................................ 34 Coal......................................................... 35 Exploration and Character................................ 37 Jamalganj area..................................... 38 Lamakata-^hangarghat area.......................... 40 Other areas........................................ 41 Resources and reserves..................................
    [Show full text]
  • Exploring Basement Surface Relationship of North-West Bengal Basin Using Satellite Images and Tectonic Modeling
    Article Exploring Basement Surface relationship of north-west Bengal Basin using satellite images and tectonic modeling Sabber Ahamed 1,2*, Delwar Hossain 3 and Jahangir Alam 4 1 Center for earthquake research and information (CERI), The University of Memphis 2 Now at Asurion, Nashville, Tennessee 3 Department of Geological Sciences, Jahangirnagar University Savar, Dhaka, Bangladesh 4 Geological Survey of Bangladesh, Segunbagicha, Dhaka, Bangladesh * Correspondence: [email protected] Received: date; Accepted: date; Published: date Abstract: The Bengal basin is one of the thickest sedimentary basins and is being constantly affected by the collision of the Indian plate with the Burma and Tibetan plates. The northwest part of the basin, our study area, is one of the least explored areas where the shallowest faulted basement is present. Controversies exist about the origin of the basement and its role to the formation of surface landforms. We analyze satellite images, Bouguer anomaly data, and develop a geodynamic model to explore the relationship between the faulted basement and surface landforms. Satellite images and gravity anomalies show a spatial correlation between the surface topography and basement fault structures. The elevated tracts and the low-lying flood plains are located on top of the gravity highs (horsts) and lows (grabens). The geodynamic model suggests that conjugate thrust faults may exist beneath the horsts that push the horst block upward. Our observations suggest the regional compression and basement faults have a more considerable influence on the development of surface landforms such as the uplifted tracts and the low-lying flood plains. Keywords: Bengal basin; Bouguer anomaly; Satellite images; geodynamic modeling 1.
    [Show full text]
  • Overbank Sediments: a Natural Bed Blending Sampling Medium for Large—Scale Geochemical Mappingb
    Chemometrics and Intelligent Laboratory Systems 74 (2004) 183–199 www.elsevier.com/locate/chemolab Overbank sediments: a natural bed blending sampling medium for large—scale geochemical mappingB B. Bblvikena,*, J. Bogenb, M. Jartuna, M. Langedalc, R.T. Ottesena, T. Voldena aGeological Survey of Norway, NO-7491 Trondheim, Norway bNorwegian Water Resources and Energy Administration, P.O. Box 5091 Majorstua, NO-0301 Oslo, Norway cCity of Trondheim, NO-7004 Trondheim, Norway Received 15 December 2003; received in revised form 28 May 2004; accepted 17 June 2004 Available online 15 September 2004 Abstract Overbank sediments occur along rivers and streams with variable water discharge. They are deposited on floodplains and levees from water suspension during floods, when the discharge exceeds the amounts that can be contained within the normal channel. Overbank sediments were introduced as a sampling medium in geochemical mapping in 1989, and a number of studies have later been published on this subject. These papers indicate: 1. Depth integrated samples of overbank sediments reflect the composition of many current and past sediment sources upstream of the sampling point, contrary to active stream sediments, which originate in a more restricted number of presently active sediment sources from which they move regularly along the stream channel. In many regions overbank sediments are more representative of drainage basins than active stream sediments and can, therefore, be used to determine main regional to continental geochemical distribution patterns with widely scattered sample sites at low cost per unit area. 2. Samples of overbank sediments can be collected in floodplains or old terraces along laterally stable or slowly migrating channels.
    [Show full text]
  • Floodplain Construction and Overbank Deposition in a Wandering Reach of the Fraser River, Chilliwack, B.C
    FLOODPLAIN CONSTRUCTION AND OVERBANK DEPOSITION IN A WANDERING REACH OF THE FRASER RIVER, CHILLIWACK, B.C. by Orval R. Morningstar B.Sc., University of Guelph, 1985 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Geography 0 Orval R. Morningstar 1987 SIMON FRASER UNIVERSITY October 1987 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Name : Orval Raymond Morningstar Degree: Master of Science Title of Thesis: Floodplain Construction and Overbank Deposition in a Wandering Reach of the Fraser River, Chilliwack, B.C. Examining Cornittee: I Chai man : I. Mutchinson M.C. Roberts Senior Supervisor - Institute for Quaternary Research Geological Survey of Canada Date Approved: 4~~fnb~/?B?, PARTIAL COPYRIGHT L ICENSE I hereby grant to Slmon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copylng of thls work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permlssion. Title of Thesis/Project/Extended Essay Floodplain Construction and Overbank Deposition in a Wanderins Reach of the Fraser River, Chilliwack.
    [Show full text]
  • Geochemical Characteristics of Holocene Sediments From
    Chin.J.Geochem.(2014)33:336–350 DOI: 10.1007/s11631-014-0696-9 Geochemical characteristics of Holocene sediments from Chuadanga district, Bangladesh: Implica- tions for weathering, climate, redox conditions, provenance and tectonic setting Ismail Hossain1*, Krisna Kanta Roy1, Pradip Kumar Biswas2, Mahbubul Alam3, Md. Moniruzzaman4, and Farah Deeba4 1 Department of Geology and Mining, University of Rajshahi, Bangladesh 2 Institute of Mining, Mineralogy and Metallurgy (IMMM), Joypurhat, Bangladesh 3 Water Resource Planning Division, Institute of Water Modelling (IWM), Dhaka, Bangladesh 4 Institute of Nuclear Science and Technology (INST), Atomic Energy Commission, Dhaka, Bangladesh * Corresponding author, E-mail: [email protected] Received December 12, 2013; accepted January 21, 2014 © Science Press and Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2014 Abstract The present research deals with the geochemical characteristics of the Holocene sediments from Alam- danga area, Chuadanga district, Bangladesh. Main goals of the study are to delineate source rock characteristics, degree of chemical weathering and sorting processes and behavior of redox conditions during deposition of the sediments. Geochemical characteristics of the sediments show comparatively a wide variation in accordance with stratigraphy in their major element contents (e.g. SiO2 69.46–82.13, Al2O3 2.28–8.88 in wt%), reflecting the distinc- tive provenance and in part an unstable period in terms of tectonic activity. Geochemical classification of the sedi- ments shows mostly sub-arkose with few sub-litharenites. Some major and trace elements display comprehensible correlation with Al2O3 confirming their possible hydraulic fractionation. The chemical index of alteration (CIA*), W* index, index of compositional variability (ICV), plagioclase index of alteration (PIA*) values and the ratio of SiO2/Al2O3, suggest low degrees of chemical weathering in the source areas as well as immature to moderately ma- ture the sediments.
    [Show full text]
  • Spatial Dynamics of Overbank Sedimentation in Floodplain Systems
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Spatial dynamics of overbank sedimentation in floodplain systems Aaron R. Pierce University of Tennessee, [email protected] Sammy L. King USGS Louisiana Cooperative Fish and Wildlife Research Unit, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Pierce, Aaron R. and King, Sammy L., "Spatial dynamics of overbank sedimentation in floodplain systems" (2008). USGS Staff -- Published Research. 559. https://digitalcommons.unl.edu/usgsstaffpub/559 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Available online at www.sciencedirect.com Geomorphology 100 (2008) 256–268 www.elsevier.com/locate/geomorph Spatial dynamics of overbank sedimentation in floodplain systems ⁎ Aaron R. Pierce a, , Sammy L. King b a Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996, USA b USGS Louisiana Cooperative Fish and Wildlife Research Unit, LSU AgCenter, 124 School of Renewable Natural Resources, Baton Rouge, LA 70803, USA Received 26 July 2007; received in revised form 20 December 2007; accepted 26 December 2007 Available online 12 January 2008 Abstract Floodplains provide valuable social
    [Show full text]
  • Stratigraphic Evolution and Geochemistry of the Neogene Surma Group, Surma Basin, Sylhet, Bangladesh
    STRATIGRAPHIC EVOLUTION ABDUL AND GEOCHEMISTRY OF THE MANNAN NEOGENE SURMA GROUP, Department of Geology, SURMA BASIN, SYLHET, University of Oulu BANGLADESH OULU 2002 ABDUL MANNAN STRATIGRAPHIC EVOLUTION AND GEOCHEMISTRY OF THE NEOGENE SURMA GROUP, SURMA BASIN, SYLHET, BANGLADESH Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Auditorium GO 101, Linnanmaa, on June 15th, 2002, at 12 noon. OULUN YLIOPISTO, OULU 2002 Copyright © 2002 University of Oulu, 2002 Reviewed by Docent Kari Strand Doctor Kalle Kirsimäe ISBN 951-42-6711-7 (URL: http://herkules.oulu.fi/isbn9514267117/) ALSO AVAILABLE IN PRINTED FORMAT Acta Univ. Oul. A 383, 2002 ISBN 951-42-6710-9 ISSN 0355-3191 (URL: http://herkules.oulu.fi/issn03553191/) OULU UNIVERSITY PRESS OULU 2002 Mannan, Abdul, Stratigraphic evolution and geochemistry of the Neogene Surma Group, Surma Basin, Sylhet, Bangladesh Department of Geology, University of Oulu, P.O.Box 3000, FIN-90014 University of Oulu, Finland Oulu, Finland 2002 Abstract The Surma basin is a part of the Bengal Basin situated in northeastern Bangladesh. The presence of eight gas fields and one oil field makes this an area that is interesting both economically and geologically. In spite of detailed geological and geophysical investigations, information available on palynostratigraphy and geochemistry for the area is scanty. The aim of the present work was to investigate the palynological assemblages, mineralogy and geochemistry of the Surma Group (SG) sequences in Surma Basin, Bangladesh. Core samples (n = 188) were gathered from the wells following: Patharia well-5, Rashidpur well-1, Atgram well- IX, Habiganj well-1, Kailastila well-1 and Fenchuganj well-2.
    [Show full text]
  • Dinosaur Paleontology and Taphonomy of a Mixed Bonebed
    1 Sankey, J.T. In Press. In: New Perspectives on Horned Dinosaurs, M. Ryan, B. Chinnery- Allgeier, and D. Eberth (eds). Indiana University Press, Bloomington. Faunal Composition and Significance of High Diversity, Mixed Bonebeds Containing Agujaceratops mariscalensis and other Dinosaurs, Aguja Formation (Upper Cretaceous), Big Bend, Texas Julia T. Sankey Department of Physics and Geology, California State University, Stanislaus, One University Circle, Turlock, California 95382 U.S.A. [email protected] RH: Bonebeds and Agujaceratops in Big Bend 2 Abstract New sedimentologic and paleontologic information are presented from multiple, closely associated mixed bonebeds in the Aguja Formation (Campanian) from the Big Bend area of Texas. These bonebeds appear to have been deposited as component parts of channel lags during major flooding events. One of these bonebeds yields the most complete skull of Agujaceratops mariscalensis. Correlation of paleosols in the bonebed sections with those from the well studied Dawson Creek section (Big Bend), provides a critical stratigraphic context for A. mariscalensis and these bonebeds. Cumulatively, all the sites yield a rich assemblage of plants, invertebrates and other vertebrates. The combined vertebrate assemblage provides a means of assessing local terrestrial- community composition in the Late Cretaceous in Big Bend, and for comparing Late Cretaceous southern faunas with those of comparable age from Montana and Alberta. Introduction Big Bend National Park, Texas, is the southernmost area in the United States that yields Upper Cretaceous macrofossil dinosaur remains, as well as rich and diverse vertebrate microfossil assemblages. Although this area contains unique vertebrate assemblages, much less is known about them than those of similar age from regions farther north in Montana and Alberta.
    [Show full text]
  • Crevasse Splay Processes and Deposits in an Ancient Distributive Fluvial System: the Lower Beaufort Group, South Africa
    This is a repository copy of Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/117911/ Version: Accepted Version Article: Gulliford, AR, Flint, SS and Hodgson, DM orcid.org/0000-0003-3711-635X (2017) Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa. Sedimentary Geology, 358. pp. 1-18. ISSN 0037-0738 https://doi.org/10.1016/j.sedgeo.2017.06.005 © 2017 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Crevasse splay processes and deposits in an ancient distributive fluvial system: the lower 2 Beaufort Group, South Africa 3 4 Alice R.
    [Show full text]
  • Geologic, Geomorphic and Hydrologic Framework and Evolution of the Bengal Basin, India and Bangladesh
    Journal of Asian Earth Sciences 34 (2009) 227–244 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jaes Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh Abhijit Mukherjee a,*, Alan E. Fryar b, William A. Thomas b a Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, University Station, Box X, Austin, TX 78713-8924, USA b Department of Earth and Environmental Sciences, University of Kentucky, KY 40506-0053, USA article info abstract Article history: The Bengal basin, the largest fluvio-deltaic sedimentary system on Earth, is located in Bangladesh and Received 7 June 2007 three eastern states of India. Sediment accumulates in the basin from the Ganges, Brahmaputra, and Meg- Received in revised form 9 May 2008 hna (GBM) river systems and is dispersed into the Bay of Bengal, forming the largest submarine fan in the Accepted 22 May 2008 world. The basin is located in the Himalayan foreland at the junction of the Indian, Eurasian, and Burmese plates. The basin is bounded by the Indian craton on the west and the Indo-Burmese fold belts on the east. It can be broadly divided into a stable shelf and a foredeep separated by a deep seismic hinge zone. Basin Keywords: sediments overlie Gondwanan basement and vary in thickness from a few kilometers on the stable shelf Ganges to more than 16 km in the foredeep. The basin was initiated at the breakup of Gondwanaland in the late Brahmaputra Meghna Mesozoic and evolved through the formation of the proto-GBM delta to the present delta starting around Fluvio-deltaic system 10.5 Ma.
    [Show full text]
  • OVERPRESSURE in the EASTERN BENGAL BASIN, BANGLADESH, and ITS RELATION to COMPRESSIONAL TECTONICS Except Where Reference Is Made
    OVERPRESSURE IN THE EASTERN BENGAL BASIN, BANGLADESH, AND ITS RELATION TO COMPRESSIONAL TECTONICS Except where reference is made to the work of others, the described in this thesis is my own work or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ___________________________________ Muhammad Shahadat Hossain Certificate of Approval: ______________________ ______________________ Ming–Kuo Lee Ashraf Uddin, Chair Professor Associate Professor Geology and Geography Geology and Geography ______________________ ______________________ Charles E. Savrda Willis E. Hames Professor Professor Geology and Geography Geology and Geography ______________________ George T. Flowers Dean Graduate School OVERPRESSURE IN THE EASTERN BENGAL BASIN, BANGLADESH, AND ITS RELATION TO COMPRESSIONAL TECTONICS Muhammad Shahadat Hossain A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama December 18, 2009 OVERPRESSURE IN THE EASTERN BENGAL BASIN, BANGLADESH, AND ITS RELATION TO COMPRESSIONAL TECTONICS Muhammad Shahadat Hossain Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights. _________________________ Muhammad Shahadat Hossain _________________________ Date of Graduation VITA Muhammad Shahadat Hossain, son of Muhammad Delwar Hossain and Mansura Akter, was born July 03, 1978, in Nangalkot, Comilla, Bangladesh. He passed his Higher Secondary Certificate Examination in 1996 from Government Science College, Dhaka with distinctions. He received his Bachelor of Science and Master of Science degrees in Geology in 2003 and 2006, respectively, from the University of Dhaka, Bangladesh. He entered the graduate school at Auburn University to pursue his second Master of Science degree from the department of Geology and Geography in Fall 2007.
    [Show full text]