The Interaction of Resource and Labour Productivity

Total Page:16

File Type:pdf, Size:1020Kb

The Interaction of Resource and Labour Productivity THE INTERACTION OF RESOURCE AND LABOUR PRODUCTIVITY Scientific background report to the Scoping Study Sustainable Europe Research Institute (SERI) bio by Deloitte on behalf of: European Commission, DG Environment Authors: Andrea Stocker, Stefanie Gerold, Friedrich Hinterberger (SERI) Anton Berwald, Sébastien Soleille, Valerie Anne Morgan, Elisavet Zoupanidou (bio by Deloitte) December 2015 The interaction of resource and labour productivity Content 1 Introduction/Motivation 4 2 Definitions 5 2.1 Resource productivity and resource efficiency 5 2.2 Other concepts of productivity 7 3 The storyline 8 3.1 Drivers of economic growth 8 3.2 The role of labour and resource productivity increases to improve the conditions for growth 10 4 Historical trends of labour, capital and resource productivities and their determinants 13 4.1 Productivity trends 13 4.2 Historical trends of resource productivity compared to economic growth and resource use 17 4.3 Development of resource prices 20 4.4 Share of material costs on whole production costs 22 5 How and to what extent does resource productivity contribute to economic growth? 25 5.1 Impacts of resource productivity on growth 25 5.2 Impacts of growth on resource productivity 26 6 How and to what extent does resource productivity contribute to environmental improvements and decreases in resource use? 29 7 How and to what extent does resource productivity contribute to job creation? 34 7.1 Theoretical and conceptual considerations 34 7.2 Experience from the past 37 7.3 Insights from scenario analyses 41 7.4 The impact of different types of drivers for resource productivity on employment 46 8 Sectoral data analysis of material versus labour and capital productivity 64 8.1 Data and Methodology 65 8.2 Resource, labour and capital productivity across sectors 73 8.3 Identification of drivers for resource productivity across countries 91 8.4 Policy relevant questions linking resource efficiency to jobs 99 8.5 Number of jobs and job potential 100 8.6 Implementing scenario analysis 103 8.7 Summary and conclusions of the empirical analysis 110 8.8 Limitations of the empirical analysis 112 9 Integration of resources and resource productivity in the economic model114 9.1 How are resources considered in growth theory? 114 SERI – Sustainable Europe Research Institute 2 The interaction of resource and labour productivity 9.2 Resource constraints 116 9.3 How are resources currently integrated in economic models? 119 9.4 What relevant aspects should be considered in order to properly integrate resources in economic models and better link resource productivity to jobs? 127 10 Summary and Conclusions 132 10.4 Historical trends 132 10.5 How and to what extent does resource productivity impact on growth and resource use? 134 10.6 How and to what extent does resource productivity impact on employment? 135 10.7 Conclusion from the literature review 141 10.8 What does the empirical analysis reveal? 142 10.9 How are resource use and resource productivity integrated in economic models? 144 11 Policy implications and recommendations 146 12 Limitations and further research needs 148 13 References 152 ANNEX 171 Annex 1: Development of labour productivity in the service sectors 171 Annex 2: Additional material and results from empirical analysis 173 SERI – Sustainable Europe Research Institute 3 The interaction of resource and labour productivity 1 Introduction/Motivation This final report summarizes the findings of the project „The interaction of resource and labour productivity”. The report addresses three main tasks: the assessment of existing empirical studies regarding how resource productivity impacts employment, a sectorial data analysis of material versus labour and capital productivity, the integration of resource productivity in the economic model. The main messages and findings of these tasks are summarized and con- nected to each other in an extra document (titled as “scoping study”), based on a storyline that refers to the relationships between resource productivity and labour productivity, economic growth, employment and resource use. This scoping study also draws common conclusions to show how resource policies could be better integrated in economic policy making and provides information about the limitations as well as further research needs. The purpose of this scoping study is to work out how resource efficiency affects labour productivity and employment. The link is analysed on an em- pirical and a conceptual basis focussing on the macro-economic and secto- rial level. The study looks for real-life evidence in business and the economy as well as for conceptual arguments in economic theory. It aims at taking stock and drawing lessons for better policies that both enhance resource efficiency and employment. While the scoping study presents the results in a very concise way – in the manner of an extended executive summary - this final report provides more information. The results are described for each of the three tasks respective- ly. Based on the overall findings we draw conclusions on how resource poli- cies could be better integrated in economic policy making in a clear and concise manner for decision makers. Finally, we identify the largest gaps and hence ideas for further research. This document is structured as follows: After a short theoretical and concep- tual explanation of the relationships that will be considered in this scoping study we present the historical trends of labour and resource productivity and its main determinants. Then, we analyse the effects of resource produc- tivity on growth, resource use and in particular on employment. After that we provide an empirical analysis in order to give an overview of the develop- ment of material use and of labour intensity in different Member States. The objective is to provide an analysis of different sectors on their material, la- bour and capital productivity, and to understand the reasons for differences across Member States. Furthermore, we explore the impact of material productivity on employment outcomes at the macro level. After that, we come back to theoretical considerations how to better integrate resource productivity in the economic model. Based on the overall findings we draw conclusions on how resource policies could be better integrated in economic policy making in a clear and concise manner for decision makers. Finally, we identify the largest gaps and hence ideas for further research. SERI – Sustainable Europe Research Institute 4 The interaction of resource and labour productivity 2 Definitions In order to interpret and compare the results, the exact meaning and defini- tion of the indicators must be clear. From the review one can conclude that the literature dealing with resource efficiency/productivity is fragmented, sometimes uses different definitions and misleading terms and conceptual unity is missing, which seems to hinder knowledge transfer within academics and from academics to policy makers (Besco 2014). 2.1 Resource productivity and resource efficiency The literature review focuses on the indicators resource productivity as well as resource efficiency. Although these two terms are often used synony- mously, they do not mean the same thing. Resource efficiency focuses typically either on augmenting economic out- put with a given resource input (increasing resource productivity), or on min- imising resource input with a given economic output (decreasing resource intensity); or sometimes on both (as in the case of Factor x) (Gjoksi and Sedlacko 2011). Besides the amount of resource use, resource efficiency also covers the consumption of natural resources in relation to economic benefits and environmental impacts. This is reflected in “A resource-efficient Europe – Flagship initiative under the Europe 2020 Strategy“ (EC 2011), which aims at both decoupling resource use from GDP growth as well as decoupling environmental impacts from resource use (AMEC and BIO 2013). Resource productivity is the efficiency of using natural resources to pro- duce goods and services in the economy (Bleischwitz 2010). In analogy to labour or capital productivity it describes the relation between economic outputs in monetary terms and a physical indicator for material or resource inputs (OECD 2010). The monetary component refers to the economic gains achieved through efficiency. While the definition of resource productivity in general includes among oth- ers water, land, biodiversity and ecosystem services, in this scoping study resource productivity is defined as material productivity. Materi- als/material resources comprises biotic materials/biomass (from agriculture, forestry, fishery and hunting as well as biomass products) and abiotic mate- rial resources (metal ores and metal products; non-metallic minerals and mineral products; fossil energy materials/carriers used for energetic and non-energetic purposes) that are used in production processes or for energy production. As fossil fuels are also materials, they are also part of this scop- ing study. Depending on the scale of interest, resource productivity can be calculated at different levels. At the macro level (for whole economies), for example, GDP (Gross Domestic Product) is usually applied as the economic variable, while at the meso-level GVA (Gross Value Added) is most commonly used. In general, economy-wide material flow analysis (MFA) is applied to quantify the level of material and resource use. Thus, for representing the physical indicator for material or resource
Recommended publications
  • Geoengineering in the Anthropocene Through Regenerative Urbanism
    geosciences Review Geoengineering in the Anthropocene through Regenerative Urbanism Giles Thomson * and Peter Newman Curtin University Sustainability Policy Institute, Curtin University, Perth 6102, WA, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-9266-9030 Academic Editors: Carlos Alves and Jesus Martinez-Frias Received: 26 June 2016; Accepted: 13 October 2016; Published: 25 October 2016 Abstract: Human consumption patterns exceed planetary boundaries and stress on the biosphere can be expected to worsen. The recent “Paris Agreement” (COP21) represents a major international attempt to address risk associated with climate change through rapid decarbonisation. The mechanisms for implementation are yet to be determined and, while various large-scale geoengineering projects have been proposed, we argue a better solution may lie in cities. Large-scale green urbanism in cities and their bioregions would offer benefits commensurate to alternative geoengineering proposals, but this integrated approach carries less risk and has additional, multiple, social and economic benefits in addition to a reduction of urban ecological footprint. However, the key to success will require policy writers and city makers to deliver at scale and to high urban sustainability performance benchmarks. To better define urban sustainability performance, we describe three horizons of green urbanism: green design, that seeks to improve upon conventional development; sustainable development, that is the first step toward a net zero impact; and the emerging concept of regenerative urbanism, that enables biosphere repair. Examples of green urbanism exist that utilize technology and design to optimize urban metabolism and deliver net positive sustainability performance. If mainstreamed, regenerative approaches can make urban development a major urban geoengineering force, while simultaneously introducing life-affirming co-benefits to burgeoning cities.
    [Show full text]
  • The Case Study Report Aims to Analyse More in Depth the Strategies
    Rebound effects and the ecological rucksack in the light of resource policies ESDN Case Study No. 7 Nisida Gjoksi ESDN Office Team www.sd-network.eu June 2011 Table of Contents INTRODUCTION ..................................................................................................................................3 RESOURCE EFFICIENCY AND THE REBOUND EFFECTS .........................................................................3 DEFINITION OF THE REBOUND EFFECT ......................................................................................................4 TYPES OF REBOUND EFFECT ...................................................................................................................4 POLICY RESPONSES ..............................................................................................................................4 MAGNITUDE OF REBOUND EFFECTS .........................................................................................................5 RECOMMENDATIONS ...........................................................................................................................5 RESOURCE EFFICIENCY AND THE ECOLOGICAL RUCKSACK .................................................................6 DEFINITION OF THE ECOLOGICAL RUCKSACK ..............................................................................................6 WEAKNESSES OF THE ECOLOGICAL RUCKSACK FACTOR .................................................................................7 REFERENCES .......................................................................................................................................9
    [Show full text]
  • Ecological Footprints of Nations
    ECOLOGICAL FOOTPRINTS OF NATIONS HOW MUCH NATURE DO THEY USE? -- HOW MUCH NATURE DO THEY HAVE? March 10, 1997 Mathis Wackernagel, Larry Onisto, Alejandro Callejas Linares, Ina Susana López Falfán, Jesus Méndez García, Ana Isabel Suárez Guerrero, Ma. Guadalupe Suárez Guerrero With comments and contributions by Gianfranco Bologna, Hazel Henderson, Manfred Max-Neef, Norman Myers, William E. Rees and Ernst Ulrich von Weizsäcker Illustrations by Iliana Pámanes Centro de Estudios para la Sustentabilidad Universidad Anáhuac de Xalapa Apdo. Postal 653 91000 Xalapa, Ver., MEXICO tel.: ++52 (28) 14-96-11 fax: ++52 (28) 19-15-15 e-mail: [email protected] SUMMARY This “Footprints of Nations” report compares the ecological impact of 52 large nations, inhabited by 80 percent of the world population. It also shows to what extent their consumption can be supported by their local ecological capacity. One key finding is that today, humanity as a whole uses over one third more resources and eco-services than what nature can regenerate. In 1992, this ecological deficit was only one quarter. After introducing the rationale and assessment method for this study, the report explains how such biophysical analyses can help build a sustainable future. A computer diskette is included in this report. It contains the data and the calculations for the ecological footprints for each country. THIS “RIO+5 FORUM” STUDY WAS COMMISSIONED AND FINANCED BY THE EARTH COUNCIL, COSTA RICA.1 1 ECOLOGICAL FOOTPRINTS OF NATIONS Why measure our use of nature? BOX 1: Sustainability and people’s use of nature When the Earth Summit concluded at Rio in 1992, the world was challenged to lessen its Sustainability requires decent and equitable impact on the Earth.
    [Show full text]
  • Ecological Turnaround” Udo E
    Simonis Asian Journal of German and European Studies (2016) 1:5 Asian Journal of German DOI 10.1186/s40856-016-0007-9 and European Studies ORIGINAL ARTICLE Open Access Reflections on the call for a global “ecological turnaround” Udo E. Simonis Correspondence: [email protected] Abstract Social Science Centre Berlin, Reichpietschufer 50, D- 24116 Kiel, This paper is about excessive overuse of resources and about serious environmental Berlin, Germany impacts, and the need for a global ecological turnaround. Ideas about a social contract for sustainability are being discussed, and examples given of resource decoupling and impact decoupling. Global environmental governance is seen as being insufficient and in need of vigorous reform. It seems that only through improved planetary cooperation can a collapse of the global ecosystems be prevented and global sustainability be secured. Abstrakt Die Konferenz der Vereinten Nationen 1992 in Rio de Janeiro markierte einen Meilenstein in der globalen Umweltpolitik. Der German Advisory Council on Global Change (WGBU) begründet in seinem jüngsten Hauptgutachten die Notwendigkeit einer großen globalen Transformation, wozu ein neuer Gesellschaftsvertrag zu schließen sei. Die “Große Transformation”, das Konzept des Ökonomen Karl Polanyi für die Analyse der ersten Industriellen Revolution, wird vom WBGU normativ umgedeutet: Ein radikaler Umbau der nationalen Ökonomien und der Weltwirtschaft innerhalb spezifischer “planetarischer Leitplanken” soll die Überforderung und den Zusammenbruch der globalen Ökosysteme
    [Show full text]
  • MATERIAL INTENSITY of the ECONOMY Consumption and Material Consumption Core Indicator Production Patterns
    MATERIAL INTENSITY OF THE ECONOMY Consumption and Material Consumption Core indicator Production Patterns 1. INDICATOR (a) Name: Material Intensity of the Economy. (b) Brief Definition: Ratio of Domestic Material Consumption (DMC) to Gross Domestic Product (GDP) at constant prices. (c) Unit of Measurement: Kilograms per $1,000 of GDP. (d) Placement in the CSD Indicators Set: Consumption and Production Patterns/Material Consumption. 2. POLICY RELEVANCE (a) Purpose: The indicator provides a basis for policies to increase the efficient use of raw materials in order to conserve natural resources and reduce environment degradation resulting from primary extraction, material processing, manufacturing and waste disposal. (b) Relevance to Sustainable/Unsustainable Development (theme/sub-theme): Improving the efficiency with which materials are used and consequently reducing stresses on the environment are the subjects of chapter 4 of Agenda21, Changing Consumption Patterns. Primary extraction of raw materials, processing of the materials into products, and ultimate disposal of the waste material has major environmental impacts. Reducing the material intensity of production and consumption of goods and services is essential to environmental protection and resource conservation. Reductions in intensity of material use can be achieved by more efficient use of natural resources in production and consumption, by recycling used and waste material, and by shifts in consumption patterns to less material intensive goods and services. The indicator allows an analysis of consumption of natural resources, as well as trends in recovery and recycling. Per-capita consumption of the materials could also be determined, facilitating the interpretation of trends in material intensity. The indicator can also be used as a proxy for assessing trends in industrial pollution.
    [Show full text]
  • Resource Productivity As Sustainability Indicator May Need Developing Resource Productivity Has Become a Popular Indicator of Environmental Sustainability
    26 May 2011 Resource productivity as sustainability indicator may need developing Resource productivity has become a popular indicator of environmental sustainability. However, new research has demonstrated that it is influenced by national income and its current use tends to support a simultaneous growth in economic productivity and resource consumption. In order to shape policy effectively, the study suggests that targets should directly emphasise resource consumption and emissions. In order for environmental policy to set effective targets, representative indicators of sustainability are needed. ‘Resource productivity’ is the Gross Domestic Product (GDP) output per resource input (measured in tonnes). It is interpreted as a sign of efficient use of resources and is now used widely as an indicator of environmental sustainability. However, there are some concerns about how this measure is used and interpreted. The researchers conducted an international study of resource productivity for a range of resources in the year 2000. They measured the income elasticities of resource consumption, i.e. the degree that resource consumption varies with national income. They divided resources into the categories of biomass, fossil fuels and ‘other’ (which includes hydraulic and nuclear energy, construction materials and ores and industrial minerals). The results indicated that the consumption of fossil fuels has a high income elasticity, which means that as the national income increases, so too does fossil fuel consumption. However, biomass consumption is inelastic and does not vary with income. Consumption in the ‘other’ category has an intermediate income elasticity. Further analysis indicated that if resource consumption varies with income, resource productivity does not. This is most likely because resource productivity is calculated by dividing income by consumption, so if consumption is proportional to income, there will be no variation in productivity.
    [Show full text]
  • Revisiting Rebound Effects from Material Resource Use. Indications for Germany Considering Social Heterogeneity
    Resources 2014, 3, 106-122; doi:10.3390/resources3010106 OPEN ACCESS resources ISSN 2079-9276 www.mdpi.com/journal/resources Article Revisiting Rebound Effects from Material Resource Use. Indications for Germany Considering Social Heterogeneity Johannes Buhl Wuppertal Institute for Climate, Environment and Energy, Doeppersberg 19, Wuppertal D-42103, Germany; E-Mail: [email protected]; Tel.: +49-202-2492-156; Fax: +49-202-2492-108 Received: 7 November 2013; in revised form: 7 January 2014 / Accepted: 20 January 2014 / Published: 10 February 2014 Abstract: In contrast to the original investigation by William Stanley Jevons, compensations of energy savings due to improved energy efficiency are mostly analyzed by providing energy consumption or greenhouse gas emissions. In support of a sustainable resource management, this paper analyzes so-called rebound effects based on resource use. Material flows and associated expenditures by households allow for calculating resource intensities and marginal propensities to consume. Marginal propensities to consume are estimated from data of the German Socio-Economic Panel (SOEP) in order to account for indirect rebound effects for food, housing and mobility. Resource intensities are estimated in terms of total material requirements per household final consumption expenditures along the Classification of Individual Consumption according to Purpose (COICOP). Eventually, rebound effects are indicated on the basis of published saving scenarios in resource and energy demand for Germany. In sum, compensations due to rebound effects are lowest for food while the highest compensations are induced for mobility. This is foremost the result of a relatively high resource intensity of food and a relatively low resource intensity in mobility.
    [Show full text]
  • Analysing Resource Efficiency Transitions in Asia and the Pacific United Nations Publication Copyright © United Nations 2017
    Analysing Resource Efficiency Transitions in Asia and the Pacific United Nations publication Copyright © United Nations 2017 ST/ESCAP/2807 Disclaimer The designations employed and the presentation of the materials in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. Analysing Resource Efficiency Transitions in Asia and the Pacific follows the United Nations practice in references to countries. Where there are space constraints, some country names have been abbreviated. Mention of a commercial company or product in this publication does not imply endorsement by the Economic and Social Commission for Asia and the Pacific. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. Reproduction and dissemination of material in this publication for education or other non-commercial purposes are authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of material in this information product for sale or other commercial purposes, including publicity and advertising, is prohibited without permission of the copyright holders. Application for such permission with a statement of purpose and extent of the reproduction, as well as questions and comments should be addressed to: Director, Environment and Development Division United Nations Economic and Social Commission for Asia and the Pacific United Nations Building Rajadamnern Nok Avenue Bangkok 10200 Thailand United Nations publication Copyright © United Nations 2017 All rights reserved Printed in Bangkok ST/ESCAP/2807 This publication may be reproduced in whole or in part for educational or non-profit purposes without special permission from the copyright holder, provided that the source is acknowledged.
    [Show full text]
  • Transforming Consumption: from Decoupling, to Behavior Change, to System Changes for Sustainable Consumption
    UC Berkeley UC Berkeley Previously Published Works Title Transforming Consumption: From Decoupling, to Behavior Change, to System Changes for Sustainable Consumption Permalink https://escholarship.org/uc/item/7qn670bv Journal Annual Review of Environment and Resources, 40(1) ISSN 1543-5938 Authors O'Rourke, D Lollo, N Publication Date 2015 DOI 10.1146/annurev-environ-102014-021224 Peer reviewed eScholarship.org Powered by the California Digital Library University of California EG40CH09-ORourke ARI 11 October 2015 12:38 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Transforming Consumption: • Explore related articles • Search keywords From Decoupling, to Behavior Change, to System Changes for Sustainable Consumption Dara O’Rourke1 and Niklas Lollo2 1Department of Environmental Science, Policy, and Management, 2Energy and Resources Group, University of California, Berkeley, Berkeley, California, 94720; email: [email protected] Annu. Rev. Environ. Resour. 2015. 40:233–59 Keywords First published online as a Review in Advance on sustainable consumption, efficiency, decoupling, behavior change, September 11, 2015 sustainability transition, postgrowth economics The Annual Review of Environment and Resources is online at environ.annualreviews.org Abstract This article’s doi: Consumption, although often considered an individual choice, is deeply in- 10.1146/annurev-environ-102014-021224 grained in behaviors, cultures, and institutions, and is driven and supported Copyright c 2015 by Annual Reviews. by corporate and government practices. Consumption is also at the heart All rights reserved of many of our most critical ecological, health, and social problems. What is referred to broadly as sustainable consumption has primarily focused on making consumption more efficient and gradually decoupling it from energy and resource use.
    [Show full text]
  • Measuring Resource Productivity a Background Paper by David Pearce
    measuring resource productivity a background paper by David Pearce for the Department of Trade and Industry & Green Alliance conference: Revolutionising resource use: measuring radical improvements in resource productivity London, 14 February 2001 “green alliance... This paper is intended as a brief background 'benchmark' paper to assist with discussion of the notion of resource productivity.A far more detailed paper, prepared for DG Environment of the European Commission, and titled Public Policy and Natural Resources Management: a Framework for Integrating Concepts and Methodologies for Policy Evaluation, is available on the Commission's web site at www.europa.eu.int/comm/environment/enveco/s tudies2.htm, or by contacting the author at [email protected] extended paper deals with related notions such as 'sustainable consumption', 'sustainable development', 'ecological footprints', 'environmental space', 'genuine savings' etc. which are not addressed here. David Pearce David Pearce, Department of Economics, University College London and OXERA Ltd, Oxford. Department of Trade and Industry Department of Trade and Industry Environment Directorate 151 Buckingham Palace Road London SW1W 9SS tel: 020 7215 1975 fax: 020 7215 1621 e-mail: [email protected] contents web: www.dti.gov.uk/sustainability/ preface 1 Green Alliance summary of key issues and options 2 Green Alliance 1 defining resource productivity 3 40 Buckingham Palace Road London SW1W 0RE 2 is the notion of resource tel: 020 7233 7433 fax: 020 7233 9033 productivity new? 3 e-mail: [email protected] 3 why raise resource productivity? 3 web: www.green-alliance.org.uk 4 How far can resource productivity be raised? 4 Green Alliance is a registered charity number 1045395.
    [Show full text]
  • OVERCONSUMPTION? Our Use of the World´S Natural Resources This Report Was Financially Supported By
    OVERCONSUMPTION? Our use of the world´s natural resources This repOrT was financially suppOrTed by Working Committee “Forum mineralische Rohstoffe” of the Austrian association for building materials and ceramic industries Federal Environment Agency, Germany SUPPORTED BY Federal Ministry of Agriculture, Forestry, Environment and Water Management, Austria Friends of the Earth England, Wales and Northern Ireland CREDITS: RESEARCH: Sustainable Europe Research Institute (SERI), Austria and GLOBAL 2000 (Friends of the Earth Austria) – IN COOPERATION WITH: Institute for Economic Structures Research (GWS), Germany – TEXT: Stefan Giljum, Friedrich Hinterberger, Martin Bruckner, Eva Burger, Johannes Frühmann, Stephan Lutter, Elke Pirgmaier, Christine Polzin, Hannes Waxwender, Lisa Kernegger, Michael Warhurst – INFO-GRAPHICS: Roswitha Peintner ACKNOWLEDGEMENTS: We thank Nicky Stocks, Becky Slater, Kenneth Richter and Hannah Griffiths from Friends of the Earth England, Wales and Northern Ireland (FoE EWNI) as well as Christian Lutz and Bernd Meyer from GWS for their assistance with the content of this report. – EDITING: Becky Slater and Michael Warhurst – PRODUCTION: Lisa Kernegger and Stefan Giljum – DESIGN: Hannes Hofbauer – PHOTO-EDITING: Steve Wyckoff – PHOTOS: Jiri Rezac/WWF-UK (p5), iStockphoto (p8, p11, p16, p18, p21, p22, p25, p28, p31), Elaine Gilligan/FoE EWNI (p12), Asociación Civil LABOR (p13), Aulia Erlangga/FoE EWNI (p14), Michael Common/Green Net (p19), Michael Warhurst/FoE EWNI (p30, p32), Cover: iStockphoto – PRINTING: Janetschek, A-3860 Heidenreichstein, www.janetschek.at – PRINTED ON 100% RECYCLED PAPER © SERI, GLOBAL 2000, Friends of the Earth Europe, September 2009 2 | OVERCONSUMPTION? Our use of the world’s natural resources execuTive summary atural resources, including materials, water, energy and Europe thus benefits from a major transfer of resources N fertile land, are the basis for our life on Earth.
    [Show full text]
  • Boosting Resource Productivity by Adopting the Circular Economy
    BOOSTING RESOURCE PRODUCTIVITY BY ADOPTING THE CIRCULAR ECONOMY Davos I Switzerland MEETING REPORT WRF 2015 WRF is an independent non-profit international organization that serves as a platform connecting and fostering knowledge exchange on resources ma- nagement amongst business leaders, policy-makers, NGOs, scientists and the public. This report was drafted by Xaver Edelmann, Bas de Leeuw, Mathias Schluep, Sonia Valdivia, Cecilia Matasci, María Lucía Híjar and Angel Versetti based upon inputs from workshop reporters, speakers and participants. The report has not been reviewed by the speakers. Photos Robert Stürmer. Contact: www.stuermerfoto.ch Technical assistance and design María Lucía Híjar (WRF) St. Gallen, Switzerland, March 2016 ISBN 978-3-906177-11-3 Contact information Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland WRF Secretariat Phone + 41 71 554 09 00 [email protected] www.wrforum.org Visit us on Facebook, Twitter and LinkedIn WORLD RESOURCES FORUM TABLE OF CONTENTS Chairman‘s Summary.....................................................5 1 Photo Gallery..................................................10 2 Plenary Highlights............................................13 3 Selected Workshops Highlights..........................19 4 Selected Master Classes Highlights.....................66 5 Overview Scientific Sessions and Awards.............70 6 Overview Side Events.......................................72 7 WRF Cinema..................................................76 8 Exhibition and UN Lounge.................................78
    [Show full text]