Flexible Omnivory in Dikerogammarus Villosus (Sowinsky, 1894) (Amphipoda) — Amphipod Pilot Species Project (Ampis) Report 5

Total Page:16

File Type:pdf, Size:1020Kb

Flexible Omnivory in Dikerogammarus Villosus (Sowinsky, 1894) (Amphipoda) — Amphipod Pilot Species Project (Ampis) Report 5 FLEXIBLE OMNIVORY IN DIKEROGAMMARUS VILLOSUS (SOWINSKY, 1894) (AMPHIPODA) — AMPHIPOD PILOT SPECIES PROJECT (AMPIS) REPORT 5 BY DIRK PLATVOET1,6), GERARD VAN DER VELDE2,3), JAIMIE T. A. DICK4) and SHUQIANG LI5) 1) Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands 2) Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands 3) National Museum of Natural History Naturalis, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands 4) School of Biological Sciences, Medical and Biological Centre, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K. 5) Department of Invertebrate Zoology, Institute of Zoology, Chinese Academy of Sciences, Du-Tun Road, Beijing 100101, P.R. China ABSTRACT Feeding in Dikerogammarus villosus (Sowinsky, 1894) males was observed in the field and recorded on video in the laboratory. The following feeding modes were recognized: detritus feeding, grazing, particle feeding, coprophagy, predation on benthic and free swimming invertebrates, predation on fish eggs and larvae, as well as feeding on byssus threads of the zebra mussel, Dreissena polymorpha (Pallas, 1771). The feeding methods are described and illustrated with screenshots of video recordings. The very flexible feeding modes of D. villosus, which make diet switches possible, form a trait that must be an important factor in the invasion success of this Ponto-Caspian gammaridean species, and may thus explain for a great deal its high ecosystem impact. RÉSUMÉ L’alimentation des mâles de Dikerogammarus villosus (Sowinsky, 1894) a été observée dans la nature et enregistrée par vidéo au laboratoire. Les différents modes d’alimentation suivants ont été reconnus: détritivore, broutage, particulaire, coprophage, prédation sur des invertébrés benthiques et nageurs, prédation d’œufs et de larves de poissons, et aussi alimentation sur les amas de la moule rayée Dreissena polymorpha (Pallas, 1771). Les méthodes d’alimentation sont décrites et illustrées avec des photos provenant d’enregistre- ments vidéos. Le mode d’alimentation très flexible de D. villosus, qui permet des changements de 6) e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2009 Crustaceana 82 (6): 703-720 Also available online: www.brill.nl/cr DOI:10.1163/156854009X423201 704 DIRK PLATVOET ET AL. régime, est un trait qui est peut-être un facteur important dans le succès d’invasion de cette espèce de gammaridé Ponto-Caspien et qui peut expliquer en grande partie son fort impact sur l’écosystème. INTRODUCTION Gammaridean amphipods have long been considered purely as shredders of organic material. In a growing number of publications, however, the role of these amphipods in food-webs is put in a different perspective by Gledhill et al. (1993) and Monakov (2003, and literature therein). In Irish river systems, 95% of the macroinvertebrate biomass can consist of Gammarus p. pulex (Linnaeus, 1758), an invasive alien species in Ireland (MacNeil et al., 2000). Assuming that the absence of other macroinvertebrates in these rivers is the result of interaction with this species, then a predatory role of this species becomes rational. Intraguild predation has been recognized as a common phenomenon in gammarideans (Dick et al., 1993). Stable isotope data of Dikerogammarus villosus (Sowinsky, 1894) from the river Rhine indicated that this invasive Ponto-Caspian gammaridean clustered with zoobenthivorous fish in contrast to Gammarus tigrinus Sexton, 1939, which species occurred on a lower trophic level (Marguillier, 1998; Marguillier et al., 1998; Van der Velde et al., 2000; Van Riel et al., 2006b). The appearance of D. villosus in the river Rhine coincided with the decrease of the North American gammaridean, G. tigrinus as well as of other macroinvertebrates, in particular on the stones of groynes and river banks (Van der Velde et al., 2000, 2002; Van Riel et al., 2006a, b). In a Rhine-fed lake in the Netherlands, the IJsselmeer, the appearance of D. villosus coincided with the total disappearance of the native G. duebenii Lilljeborg, 1852 from the stony banks, its only habitat in the lake, whereas G. tigrinus disappeared also from these stones but maintained its population in deeper water in the sediment, and in zebra mussel beds (Platvoet, 2007). Predation on a wide range of other invertebrates was first demonstrated by laboratory experiments (Dick et al., 2002), in which Dikerogammarus villosus proved to be a formidable predator, preying even on predaceous, hard skinned insects such as water bugs and damselfly larvae. However, in the absence of prey, this species is easily able to switch to particle feeding (Platvoet et al., 2006). Being a food generalist is an important characteristic for an invading species (Van der Velde et al., 2000). To determine how flexible D. villosus is with respect to feeding, we studied its feeding-related activities. We also discuss the position of this species, and of gammaridean species in general, in the classification of species as belonging to various feeding guilds or categories. FLEXIBLE OMNIVORY DIKEROGAMMARUS VILLOSUS — AMPIS 5 705 MATERIAL AND METHODS In May 2001, male specimens of Dikerogammarus villosus were collected from Lake Gouwzee, a Rhine-fed, slightly brackish lake that is part of the Markermeer/IJsselmeer complex. The specimens were immediately transferred to the laboratory and stored in a large tank with site water at site temperature (16◦C). Four male specimens of D. villosus were involved in the observations (body length 21-22 mm). In gammaridean amphipods with a pre-copula stage, males are much larger than females. Therefore, males are far more active food collectors than females. Recording on video was done with a JVC digital video camcorder GR-DVL100 on mini DV at the highest resolution. Two types of cuvettes were used: the first experiments were performed with two bolted-together plexi-glass plates separated by a plastic hose bent in U-shape, leaving a 9 mm space between the plates with 25 ml of source water, and later a cuvette was developed consisting of a U-shaped plexi-glass plate of 10 by 10 cm of 9 mm thickness lined with two 2 mm thick glass plates of 10 10 cm, with 16 ml of source water. Both cuvettes were aerated × with a syringe needle connected to a hose and an air pump. Water temperature in the cuvettes was maintained at 19◦C during the experiments, the temperture of the climate room. The males were individually filmed in a total of 20 recording sessions of one hour each. In four one-hour experiments, a mix of several food items was offered to give D. villosus a choice. Most invertebrates offered were collected from a small inland water body where D. villosus is absent, the Oosterpoel bordering the Gouwzee, with equal salinity and temperature as the lake. Water fleas (Daphnia sp.) were obtained from an aquarium shop. A pondweed (Potamogeton pectinatus L.) was collected from Lake Gouwzee. In some experiments, the animals were given an abundant supply of vegetation or invertebrate specimens, in others only a single prey. Generally, potential prey or plants were already present in the cuvette for 15 minutes, before a male D. villosus was added. The males of D. villosus were not starved before the experiments. Coarse sand and gravel served as a substrate in most recordings. Observations were purely qualitative. RESULTS In all experiments a response to the food provided was recorded. It became clear that the abundance of food led to a continuous feeding activity, only interrupted by regular cleaning sessions at intervals of, on average, ten minutes. These cleaning sessions are described below in the particle feeding section. 706 DIRK PLATVOET ET AL. During detritus feeding, grazing, and some forms of predation the individuals actively browsed the substrate, while during predation of free-swimming animals attacks were made from a steady position, like from an ambush (sit and wait strategy). We identified the following feeding-related activities: 1. detritus feeding 2. coprophagy 3. grazing 4. particle feeding 5. predation of free-swimming animals 6. predation on benthic animals 7. predation on fish eggs 8. feeding on byssus threads of zebra mussels 1. Detritus feeding In four experiments, four different males were given a choice of decaying and non-decaying parts (ratio 50/50) of pondweed (Potamogeton pectinatus). Only feeding on decaying parts was observed, and the non-decaying parts were ignored. The first contact with the plant material was made by the first antennae carefully touching it. In a quick response, the second antennae pulled the food towards the outstretched first and second gnathopods. With additional support from the antennae, the food was brought in line with the mouthparts. Finally, the incisors of the mandibles cut off parts that were then moved to the molars for grinding. Fluids and particles were directed towards the oesophagus through a combined action of the inner rami of the maxilliped, the first maxillae, and of both rami of the second maxillae. The feathered setae that line these parts assisted in maintaining a directed flow. 2. Coprophagy The process of re-digestion of faeces in D. villosus started with bringing the urosome towards the mouthparts (fig. 1A–D). The third uropods were always in a horizontal position, ventral side up. The faeces were forced from the rectum in a quick action, lasting between two and four seconds, and then received by either the mouthparts directly or by the third uropods, after which the gnathopods led the faeces to the mouthparts. The inside setae of the inner rami of the third uropods are lined with long, feathered setae, forming a network. The mouthparts apparently manipulated the faeces in such a way that digestible and indigestible fractions were separated, resulting in a cloud of rejected material.
Recommended publications
  • The Killer Shrimp, Dikerogammarus Villosus (Sowinsky, 1894), Is Spreading in Italy
    Aquatic Invasions (2010) Volume 5, Issue 2: 211-214 This is an Open Access article; doi: 10.3391/ai.2010.5.2.14 Open Access © 2010 The Author(s). Journal compilation © 2010 REABIC Short communication The killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), is spreading in Italy Elena Tricarico, Giuseppe Mazza, Gabriele Orioli, Claudia Rossano, Felicita Scapini and Francesca Gherardi* Dipartimento di Biologia Evoluzionistica “Leo Pardi”, Università di Firenze, via Romana 17, 50125 Firenze, Italy E-mail: [email protected] (ET), [email protected] (GM), [email protected] (GO), [email protected] (CR), [email protected] (FS), [email protected] (FG) * Corresponding author Received: 23 November 2009 / Accepted: 11 January 2010 / Published online: 21 January 2009 Abstract In 2008, the killer shrimp, Dikerogammarus villosus, native to the Ponto-Caspian region, was found for the first time in Central Italy, in Bilancino, an artificial lake situated in the watershed of the River Arno (Tuscany). This new record shows that this species’ range is expanding in Italy. It is thus imperative to identify the pathways and vectors of spread of this species in order to halt this invasion process. Key words: Dikerogammarus villosus, inland waters, Italy Because of its predatory voracity and aggressive Devin et al. 2003; Brooks et al. 2009) and adapts behaviour, Dikerogammarus villosus (Sowinsky, to several types of substrate (Devin et al. 2003), 1894) is called the ‘‘killer shrimp’’. It is a favoured in this by its polymorphic pigmentation crustacean amphipod native to the Ponto-Caspian (Devin et al. 2004a). Its aggressive behaviour region. After the opening of the Danube-Main- and voracity cause the replacement of indigenous Rhine canal in 1992, as the result of both natural gammarids (Dick and Platvoet 2000; Van Riel et expansion and transportation in ballast waters al.
    [Show full text]
  • Seasonal Diet Pattern of Non-Native Tubenose Goby (Proterorhinus Semilunaris) in a Lowland Reservoir (Mušov, Czech Republic)
    Knowledge and Management of Aquatic Ecosystems (2010) 397, 02 http://www.kmae-journal.org c ONEMA, 2010 DOI: 10.1051/kmae/2010018 Seasonal diet pattern of non-native tubenose goby (Proterorhinus semilunaris) in a lowland reservoir (Mušov, Czech Republic) Z. Adámek(1),P.Jurajda(2),V.Prášek(2),I.Sukop(3) Received March 18, 2010 / Reçu le 18 mars 2010 Revised May 21, 2010 / Révisé le 21 mai 2010 Accepted June 3rd, 2010 / Accepté le 3 juin 2010 ABSTRACT Key-words: The tubenose goby (Proterorhinus semilunaris) is a gobiid species cur- Gobiidae, rently extending its area of distribution in Central Europe. The objective food, of the study was to evaluate the annual pattern of its feeding habits in lowland the newly colonised habitats of the Mušov reservoir on the Dyje River (the reservoir, Danube basin, Czech Republic) with respect to natural food resources. rip-rap bank, In the reservoir, tubenose goby has established a numerous population, the Dyje River densely colonising stony rip-rap banks. Its diet was exclusively of an- imal origin with significant dominance of and preference for two food items – chironomid (Chironomidae) larvae and waterlouse (Asellus aquati- cus), which contributed 40.2 and 27.6%, respectively, to the total food bulk ingested. The index of preponderance for the two items was also very high, amounting to 73.8 and 26.5, respectively. In the annual pat- tern, a remarkable preference for chironomid larvae was recorded in the summer period whilst waterlouse were consumed predominantly in win- ter months. The proportion of other food items was rather marginal – only corixids, copepods, ceratopogonids and cladocerans were of certain mi- nor importance with proportions of 5.4, 4.3, 4.1 and 3.9%, respectively.
    [Show full text]
  • Guide to Crustacea
    38 Guide to Crustacea. This is a very large and varied group, comprising numerous families which are grouped under six Sub-orders. In the Sub-order ASELLOTA the uropods are slender ; the basal segments of the legs are not coalesced with the body as in most other Isopoda ; the first pair of abdominal limbs are generally fused, in the female, to form an operculum, or cover for the remaining pairs. This group includes Asellus aquaticus, which is FIG. 23. Bathynomus giganteus, about one-half natural size. (From Lankester's "Treatise on Zoology," after Milne-Edwards and Bouvier.) [Table-case No. 6.] common everywhere in ponds and ditches in this country, and a very large number of marine species, mostly of small size. The Sub-order PHKEATOICIDEA includes a small number of very peculiar species found in fresh water in Australia and New Zealand. In these the body is flattened from side to side, and Peraca rida—Isopoda. 39 the animals in other respects have a superficial resemblance to Amphipoda. In the Sub-order FLABELLIFERA the terminal limbs of the abdomen (uropods) are spread out in a fan-like manner on each side of the telson. Many species of this group, belonging to the family Cymothoidae, are blood-sucking parasites of fish, and some of them are remarkable for being hermaphrodite (like the Cirri- pedia), each animal being at first a male and afterwards a female. Mo' of these parasites are found adhering to the surface of the body, behind the fins or under the gill-covers of the fish. A few, however, become internal parasites like the Artystone trysibia exhibited in this case, which has burrowed into the body of a Brazilian freshwater fish.
    [Show full text]
  • Is the Aquatic Dikerogammarus Villosus a 'Killer Shrimp'
    Is the aquatic Dikerogammarus villosus a ‘killer shrimp’ in the field? – a case study on one of the most invasive species in Europe Dr. Meike Koester1,2, Bastian Bayer1 & Dr. René Gergs3 1Institute for Environmental Sciences, University of Koblenz-Landau, Campus Landau, Germany 2Institute of Natural Sciences, University of Koblenz-Landau, Campus Koblenz, Germany 3Federal Environment Agency, Berlin, Germany Introduction 143 animal 58 invasive 2 Introduction Bij de Vaate et al. (2002) 3 Introduction 1994/95 first record from the River Rhine Colonised most major European rivers within 2 decades www.aquatic-aliens.de 4 Introduction Larger than native amphipods High reproductive potential & growth rate Colonises different substrates Highly tolerant towards various environmental conditions (e.g. T, O2, salinity) Feeding behaviour 5 Introduction River Rhine species of number Mean Schöll, BfG-report Nr. 172 other gamarids Dikerogammarus villosus Gammarus roeselii Gammarus pulex/fossarum after Rey et al. 2005 6 Introduction 7 Hypothesis D. villosus is also strongly predacious in the field 8 Stable Isotope Analyses (SIA) 12 13 Carbon C C 13C/12C 98,89 % 1,11 % 14 15 Nitrogen N N 15N/14N 99,64 % 0,36 % δ15N: strong accumulation Predator 1 Trophic Level ca. 3.4 ‰ Secondary consumer N 13 15 δ C: less accumulated δ Primary consumer C-source of the food Producer δ13C 9 Sampling areas of the River Rhine and its tributaries B Bulk analyses δ13C and δ15N SIBER-Analyses comparing amphipod species Genetic gut content analyses with group-specific C B rDNA primers (Koester Aet al. 2013) A C 10 A. Feeding river vs.
    [Show full text]
  • A Review of Potential Methods to Control and Eradicate the Invasive Gammarid, Dikerogammarus Villosus from UK Waters
    Cefas contract report C5525 A review of potential methods to control and eradicate the invasive gammarid, Dikerogammarus villosus from UK waters Paul Stebbing, Stephen Irving, Grant Stentiford and Nicola Mitchard For Defra, Protected Species and Non-native Species Policy Group Commercial in confidence Executive Summary The killer shrimp, Dikerogammarus villosus (Dv) is a large gammarid of Ponto-Caspian origin Dv has invaded and spread over much of mainland Europe where it has out-competed a number of native species. Dv was discovered at Grafham Water, Cambridgeshire, England, in September 2010 and subsequently in Wales in Cardiff Bay and Eglwys Nunydd near Port Talbot. In early 2012 it was found in the Norfolk Broads, the full extent of its distribution in the area is still being determined. The main objective of this work was to review the potential approaches for the control/eradication of invasive Dv populations in the UK. The approaches reviewed include physical removal (e.g. trapping), physical control (e.g. drainage, barriers), biological control (e.g. predation, disease), autocides (e.g. male sterilization and pheromone control) and biocides (the use of chemical pesticides). It should be noted that there have been no specific studies looking at the control and/or eradication of this particular species. The examples presented within this study are therefore primarily related to control of other invasive/pest species or are speculative. Recommendation made and potential applications of techniques are therefore based on expert opinion, but are limited by a relative lack of understanding of the basic life history of D. villosus within its invasive range.
    [Show full text]
  • Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
    Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron
    [Show full text]
  • Reproduction in the Freshwater Crustacean Asellus Aquaticus Along a Gradient of Radionuclide Contamination at Chernobyl
    Science of the Total Environment 628–629 (2018) 11–17 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Reproduction in the freshwater crustacean Asellus aquaticus along a gradient of radionuclide contamination at Chernobyl Neil Fuller a, Alex T. Ford a, Liubov L. Nagorskaya d, Dmitri I. Gudkov c, Jim T. Smith b,⁎ a Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK b School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL, UK c Department of Freshwater Radioecology, Institute of Hydrobiology, Geroyev Stalingrada Ave. 12, UA-04210 Kiev, Ukraine d Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., 220072 Minsk, Belarus HIGHLIGHTS GRAPHICAL ABSTRACT • We assessed effects of Chernobyl radia- tion on crustacean reproduction. • Fecundity of Asellus aquaticus assessed at dose rates from 0.06–27.1 μGy/h. • No association of radiation with repro- ductive endpoints in A. aquaticus. • Findings support proposed benchmarks for the protection of aquatic popula- tions. • Data can assist in management of radio- actively contaminated environments. article info abstract Article history: Nuclear accidents such as Chernobyl and Fukushima have led to contamination of the environment that will per- Received 25 October 2017 sist for many years. The consequences of chronic low-dose radiation exposure for non-human organisms Received in revised form 29 January 2018 inhabiting contaminated environments remain unclear. In radioecology, crustaceans are important model organ- Accepted 29 January 2018 isms for the development of environmental radioprotection.
    [Show full text]
  • Nutria Nuisance in Maryland in This Issue: and the Search for Solutions Upcoming Conferences by Dixie L
    ANS Aquatic Nuisance Species Volume 4 No. 3 August 2001 FRESHWATER DIGEST FOUNDATION Providing current information on monitoring and controlling the spread of harmful nonindigenous species. Predicting Future Aquatic Invaders; the Case of Dikerogammarus villosus By Jaimie T.A. Dick and Dirk Platvoet he accumulation of case studies of invasions has led to for- mulations of general ‘predictors’ that can help us identify Tpotential future invaders. Coupled with experimental stud- ies, assessments may allow us to predict the ecological impacts of potential new invaders. We used these approaches to identify a future invader of North American fresh and brackish waters, the amphipod crustacean Dikerogammarus villosus. Why Identify D. villosus as Invasive? Dikerogammarus villosus (see Figure 1) originates from an invasion donor “hot spot”, the Ponto-Caspian region, which com- prises the Black, Caspian, and Azov Seas’ basins (Nesemann et al. 1995; Ricciardi & Rasmussen 1998; van der Velde et al. 2000). This species has already invaded western Europe, has moved through the Main-Danube canal, which was formally opened in 1992 (Tittizer 1996), and appeared in the River Rhine at the German/Dutch border in 1994-5 (bij de Vaate & Klink 1995). D. villosus is currently sweeping through Dutch waters (Dick & Platvoet 2000) and has Dikerogammarus villosus continued on page 26 Figure 1. Dikerogammarus villosus Photograph by Ivan Ewart The Nutria Nuisance in Maryland In This Issue: and the Search for Solutions Upcoming Conferences By Dixie L. Bounds, Theodore A. Mollett, and Mark H. Sherfy and Meetings . 27 utria, Myocastor coypus, is an invasive lished in 15 states nationwide, all reporting Nuisance Notes.
    [Show full text]
  • Dikerogammarus Villosus)
    Management of Biological Invasions (2018) Volume 9, Issue 2: 101–113 DOI: https://doi.org/10.3391/mbi.2018.9.2.04 Open Access © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article A preliminary investigation into biosecurity treatments to manage the invasive killer shrimp (Dikerogammarus villosus) Marion Sebire*, Georgina Rimmer, Ruth Hicks, Sarah-Jane Parker and Paul D. Stebbing Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK Author e-mails: [email protected] (MS), [email protected] (GR), [email protected] (RH), [email protected] (SJP), [email protected] (PDS) *Corresponding author Received: 11 April 2017 / Accepted: 18 December 2017 / Published online: 4 February 2018 Handling editor: Calum MacNeil Abstract Following the detection of the invasive killer shrimp, Dikerogammarus villosus (Dv) at two sites in the UK in September 2010, an effective biosecurity system is required to prevent further spread. This study investigated the application of several treatments as potential biosecurity measures with a view to their application on Dv-infected fomites. For each treatment, adult Dv were submerged for 15 minutes at different concentrations to determine the maximum lethal concentration, and for each effective treatment for different times to assess a minimal lethal time (LT50). Sodium hypochlorite (50,000 mg/Lmg/L), FAM30® (6 ml/l), Virkon S® (1% solution) and water at high temperature (45 °C) were found to cause 100% mortality within 15-min exposure, while carbonated water caused narcosis in 100% of animals within a few seconds of exposure.
    [Show full text]
  • Present Absent D
    Alien macro-crustaceans in freshwater ecosystems in Flanders Pieter Boets, Koen Lock and Peter L.M. Goethals Pieter Boets Ghent University (UGent) Laboratory of Environmental Toxicology and Aquatic Ecology Jozef Plateaustraat 22 B9000 Gent, Belgium pieter.boets@ugent. be Aquatic Ecology Introduction Why are aquatic ecosystems vulnerable to invasions ? • Ballast water • Attachment to ships • Interconnection of canals • Vacant niches as consequence of pollution Impact of invasive macroinvertebrates ? • Ecological: decrease of diversity destabilization of ecosystem • Economical: high costs for eradication decrease of yield in aquaculture Aquatic Ecology Introduction pathways Deliberatly introduced + aquaculture Shipping (long distance) Shipping (short distance) + interconnection of canals Aquatic Ecology The process of Potentialinvasion donor region Transport (e.g. through ballast water of ships) Introduction Biotic and abiotic factors Establishment & reproduction Interactions between species (competition, predation, …) Dispersal & dominant behavior Aquatic Ecology Overview of freshwater macrocrustaceansFirst occurence in in Family Species FlandersOrigin Flanders Gammaridae Gammarus pulex Gammarus fossarum Southern Gammarus roeseli Europe 1910 EchinogammarusGammarus tigrinus IberianUSA 1993 Dikerogammarusberilloni Peninsula 1925 villosus Ponto-Caspian 1997 CrangonictidTalitridae CrangonyxOrchestia cavimana Ponto-Caspian 1927 ae Chelicorophiumpseudogracilis USA 1992 Corophidae curvispinum Ponto-Caspian 1990 Asellidae Asellus aquaticus Southern
    [Show full text]
  • Experimental Evidence of Invasion Facilitation in the Zebra Mussel-Killer
    bioRxiv preprint doi: https://doi.org/10.1101/626432; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Experimental evidence of invasion facilitation in the 2 zebra mussel-killer shrimp system 3 4 5 Matteo Rolla1, Sofia Consuegra1, Ellie Carrington1, David Hall2, 6 Carlos Garcia de Leaniz*1 7 8 1Department of BioSciences, Centre for Sustainable Aquatic Research, Swansea University, 9 Singleton Park, Swansea SA2 8PP, UK 10 11 2Cardiff Harbour Authority, Queen Alexandra House, Cargo Road, Cardiff CF10 4LY 12 *corresponding author: [email protected] 13 14 1 bioRxiv preprint doi: https://doi.org/10.1101/626432; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Abstract 16 Invasion facilitation, whereby one species has a positive effect on the establishment of another 17 species, could help explain the rapid colonisation shown by some freshwater invasive species, 18 but the underlying mechanisms remain unclear. We employed two-choice test arenas to test 19 whether the presence of zebra mussel (Dreissena polymorpha) could facilitate the establishment 20 of the killer shrimp (Dikerogammarus villosus). Killer shrimp preferred to settle on mats of zebra 21 mussel, but this was unrelated to mat size, and was not different from attraction shown to 22 artificial grass, suggesting that zebra mussel primarily provides substrate and refuge to the killer 23 shrimp.
    [Show full text]
  • Comparison of Some Epigean and Troglobiotic Animals Regarding Their Metabolism Intensity
    International Journal of Speleology 48 (2) 133-144 Tampa, FL (USA) May 2019 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Comparison of some epigean and troglobiotic animals regarding their metabolism intensity. Examination of a classical assertion Tatjana Simčič1* and Boris Sket2 1Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia 2Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia Abstract: This study determines oxygen consumption (R), electron transport system (ETS) activity and R/ETS ratio in two pairs of epigean and hypogean crustacean species or subspecies. To date, metabolic characteristics among the phylogenetic distant epigean and hypogean species (i.e., species of different genera) or the epigean and hypogean populations of the same species have been studied due to little opportunity to compare closely related epigean and hypogean species. To fill this gap, we studied the epigean Niphargus zagrebensis and its troglobiotic relative Niphargus stygius, and the epigean subspecies Asellus aquaticus carniolicus in comparison to the troglobiotic subspecies Asellus aquaticus cavernicolus. We tested the previous findings of different metabolic rates obtained on less-appropriate pairs of species and provide additional information on thermal characteristics of metabolic enzymes in both species or subspecies types. Measurements were done at four temperatures. The values of studied traits, i.e., oxygen consumption, ETS activity, and ratio R/ETS, did not differ significantly between species or subspecies of the same genus from epigean and hypogean habitats, but they responded differently to temperature changes.
    [Show full text]