Algebraic Number Theory Notes

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Number Theory Notes Math 223b : Algebraic Number Theory notes Alison Miller 1 January 22 1.1 Where we are and what’s next Last semester we covered local class field theory. The central theorem we proved was Theorem 1.1. If L/K is a finite Galois extension of local fields there exists a canonical map, the local Artin map × × ab θL/K : K /NL (Gal(L/K)) We proved this by methods of Galois cohomology, intepreting both sides as Tate ! cohomology groups. To prove this, we needed the following two lemmas: • H1(L/K, L×) =∼ 0 • H2(L/K, L×) is cyclic of order [L : K]. This semester: we’ll do the analogous thing for L and K global fields. We will need × × × to replace K with CK = AK /K . Then the analogues of the crucial lemmas are true, but harder to prove. Our agenda this semester: • start with discussion of global fields and adeles. • then: class formations, axiomatize the parts of the argument that are common to the global and local cases. • algebraic proofs of global class field theory • then we’ll take the analytic approach e.g. L-functions, class number formula, Ceb- otarev density, may mention the analytic proofs • finally talk about complex multiplication, elliptic curves. 1 1.2 Global fields, valuations, and adeles Recall: have a notion of a global field K. equivalent definitions: • every completion of K is a local field. • K is a finite extension of Q (number field) or of Fp((t)) (function field). The set of global fields is closed under taking finite extensions. We’ll primarily focus on the number field case in this class. Definition. A place v of a global field K is an equivalence class of absolute values on K. We say that v is finite / nonarchimedean if it comes from a discrete absolute value, ∼ otherwise v is infinite /archimedean (and Kv = R or C). We can pick out a distinguished element of this equivalence class, the normalized absolute value j · jv by requiring -1 jπvjv = jkvj 2 if Kv is nonarchimedean, and jajR = a, jajC = jaj . Recall from last semester: Theorem 1.2 (Product Formula). If a 2 K, then v jajv = 1. Sketch of how this was done last semester. Check forQ K = Q, Fp[t], then show that if the product formula holds for K, it holds for any finite extension L/K.( v0 extends v jajv0 = jajv.) Q + Remark. Kv has a Haar measure, unique up to scaling (if v is finite, normalize by µ(Ov) = 1, if v is infinite use the standard normalization on R and C.) + × For any measurable set E ⊂ Kv and any K 2 Kv we have µ(aE) = jajvµ(E). Definition. Suppose that fXigi2I are topological groups, and for each i we have a sub- group Yi ⊂ Xi. Then the restricted topological product of the Xi with respect to the Yi is given by Xi = f(xi)i2I j xi 2 Yi for all but finitely many ig. i aY The group structure here is clear. We take as a basis of open sets those sets of the form Ui × Yi i2S Y Yi2/S where S ⊂ I is an arbitrary finite set, and Ui ⊂ Xi are arbitrary open sets. (Note this is not the same as the subspace topology coming from viewing i Xi as a subspace of X .) i i `Q Q 2 Then we define + + AK = AK = Kv v aY + with respect to the family of subgroups Ov and × × AK = Kv v aY × with respect to the family of subgroups Ov . + × Exercise: AK = AK is a topological ring with group of units AK . 2 January 24 2.1 Adeles Definition. If K is a number field, define the topological ring AK as the restricted topo- logical product v Kv of the Kv with respect to the Ov. This ring has open cover given by the sets `Q AK,S = Kv × Ov v2S Y Yv2/S for any finite set S containing the infinite places, and the subspace topology on each AK,S ⊂ AK agrees with the product topology. × × Likewise define AK as v Kv , where now the restricted product is with respect to O×. Define A× likewise. v K,S `Q × Here AK is equal to the group of units of AK, so the notation is consistent. × Caution! The topology on AK is not the subspace topology inherited from AK: indeed, it shouldn’t be, because the map x x-1 is not continuous in the subspace topology. In general, if you have a topological ring R, the correct topology to put on R× × -1 comes from the embedding of R , R × R given! by x 7 (x, x ). × × × (Note though that if R = Kv or Ov , this topology on R agrees with the subspace topology coming from R. It’s only! because of the infinite! restricted product that we have issues.) Proposition 2.1. AK is a locally compact topological ring. Proof. all AK,S are locally compact by Tychonoff. + Hence AK has a Haar measure also, which can be described as the product of the local Haar measures. + + × × Note that K embeds into AK and K embeds into AK , diagonally. 3 ∼ Proposition 2.2. If L/K is a finite extension, then AL = AK ⊗K L as topological rings. (Here ∼ n ∼ n we topologize AK ⊗K L as follows: by choosing a basis, identify L = K , so AK ⊗K L = AK, and n use the product topology on AK. One can check that this doesn’t depend on choice of basis.) ∼ L Proof. (Sketch): Use fact that Kv ⊗K L = v0 extends v Lv0 . See Chapter 2, Section 14 of Cassels-Fröhlich for details. (In fact, this is also an isomorphism of Gal(L/K)-modules set up correctly.) + + + + Proposition 2.3. For K a global field, K is discrete (hence closed) in AK and AK /K is compact. Proof. By the previous proposition, it’s enough to check this for K = Q and K = Fp(t). We’ll do Q; the proof for Fp(t) is similar. Discrete: the set U = v6=R Zv × (-1, 1) is open and Q \ U = Z \ (-1, 1) = f0g. Cocompact: Let D = Zv × [-1/2, 1/2]. We wish to show that D + Q = A . Let Qv6=R K a 2 A+ be arbitrary: we want to show that a is congruent mod Q+ to some element of K Q D. Then there are finitely many primes p such that (a)p 2/ Zp. For each such p, there exists rp 2 Q such that rp ≡ ap (mod Z)p. Then let r = rp 2 Q. Then a - r 2 Zv × R. By subtracting off an appropriate s 2 Z, get a - r - s 2 Zv × v6=R P v6=R [-1/2, 1/2], as desired. Q Q 3 January 26 + + Last time, we showed that AK /K is compact. + Note that AK has a Haar measure. It can be described by µ( Ev) = µv(Ev) v v Y Y where Ev ⊂ Kv are measurable sets with Ev = Ov for almost all v. + + + Since K is discrete inside AK , we can push forward the measure on AK to get a + + measure on AK /K . To be more precise, let D be a measurable fundamental domain + + for the action of K on AK . (For example with K = Q we can take D = v6=R Zv × [-1/2, 1/2).) Then for E ⊂ A+ Borel define K Q -1 µAK/K(E) = µAK (π (E) \ D) where π : AK AK/K is the projection map. × Definition. If a = (av) 2 A , then we define the content c(a) = javj (this is defined ! K v because javj = 1 for all but finitely many v. Q 4 × >0 Exercise: The map c : AK R is a continuous homomorphism. Proposition 3.1. For any measurable set E ⊂ A+, and any a 2 A×, then µ(aE) = aµ(E). ! K K Proof. This follows from the description of µ as a product of local measures, and the local fact that µv(aEv) = jajvµv(Ev). As a corollary, we get another proof of the product formula: if a 2 K×, then mul- + tiplication by a gives an automorphism of AK which scales the Haar measure by c(a), and also sends K+ to itself. Hence multiplication by a scales the Haar measure on the + + quotient AK/K by c(a). On the other hand, µ(AK/K ) has finite measure, so c(a) must be 1. × × Now we move to the multiplicative situation: To show K is discrete in AK , use the × injection AK AK × AK. × × × × >0 Next question: is AK /K compact? No: c is a continuous map from AK /K R , and the latter! is not compact. However, that’s the only obstruction: ! Definition. Let 1 × × >0 AK = ker(c : AK /K R ) be the subgroup of multiplicative adeles of content 1. ! 1 × × 1 Then AK is a closed subgroup of AK , and K is discrete in AK. 1 × We plan to show that AK/K is compact, and use this to deduce the finiteness of class group and Dirichlet’s units theorem. But first we’re going to develop the adelic version of Minkowski’s theorem. × + Definition. For a 2 AK , let Sa ⊂ AK be the subset defined by + Sa = fx 2 AK j jxvjv ≤ javjv for all vg Theorem 3.2 (Adelic Minkowski). There exists a constant C > 1, depending on K, such that × × for every a = (av) 2 AK with c(a) > C, there exists some x 2 K \ Sa (in particular, x 6= 0).
Recommended publications
  • 8 Complete Fields and Valuation Rings
    18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits.
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • THE INTERSECTION of NORM GROUPS(I) by JAMES AX
    THE INTERSECTION OF NORM GROUPS(i) BY JAMES AX 1. Introduction. Let A be a global field (either a finite extension of Q or a field of algebraic functions in one variable over a finite field) or a local field (a local completion of a global field). Let C(A,n) (respectively: A(A, n), JV(A,n) and £(A, n)) be the set of Xe A such that X is the norm of every cyclic (respectively: abelian, normal and arbitrary) extension of A of degree n. We show that (*) C(A, n) = A(A,n) = JV(A,n) = £(A, n) = A" is "almost" true for any global or local field and any natural number n. For example, we prove (*) if A is a number field and %)(n or if A is a function field and n is arbitrary. In the case when (*) is false we are still able to determine C(A, n) precisely. It then turns out that there is a specified X0e A such that C(A,n) = r0/2An u A". Since we always have C(A,n) =>A(A,n) =>N(A,n) r> £(A,n) =>A", there are thus two possibilities for each of the three middle sets. Determining which is true seems to be a delicate question; our results on this problem, which are incomplete, are presented in §5. 2. Preliminaries. We consider an algebraic number field A as a subfield of the field of all complex numbers. If p is a nonarchimedean prime of A then there is a natural injection A -> Ap where Ap denotes the completion of A at p.
    [Show full text]
  • Little Survey on Large Fields – Old & New –
    Little survey on large fields { Old & New { Florian Pop ∗ Abstract. The large fields were introduced by the author in [59] and subsequently acquired several other names. This little survey includes earlier and new developments, and at the end of each section we mention a few open questions. 2010 Mathematics Subject Classification. Primary 12E, 12F, 12G, 12J. Secondary 12E30, 12F10, 12G99. Keywords. Large fields, ultraproducts, PAC, pseudo closed fields, Henselian pairs, elementary equivalence, algebraic varieties, rational points, function fields, (inverse) Galois theory, embedding problems, model theory, rational connectedness, extremal fields. Introduction The notion of large field was introduced in Pop [59] and proved to be the \right class" of fields over which one can do a lot of interesting mathematics, like (inverse) Galois theory, see Colliot-Th´el`ene[7], Moret-Bailly [45], Pop [59], [61], the survey article Harbater [30], study torsors of finite groups Moret- Bailly [46], study rationally connected varieties Koll´ar[37], study the elementary theory of function fields Koenigsmann [35], Poonen{Pop [55], characterize extremal valued fields as introduced by Ershov [12], see Azgin{Kuhlmann{Pop [1], etc. Maybe that is why the \large fields” acquired several other names |google it: ´epais,fertile, weite K¨orper, ample, anti-Mordellic. Last but not least, see Jarden's book [34] for more about large fields (which he calls \ample fields” in his book [34]), and Kuhlmann [41] for relations between large fields and local uniformization (`ala Zariski). Definition. A field k is called a large field, if for every irreducible k-curve C the following holds: If C has a k-rational smooth point, then C has infinitely many k-rational points.
    [Show full text]
  • The Kronecker-Weber Theorem
    The Kronecker-Weber Theorem Lucas Culler Introduction The Kronecker-Weber theorem is one of the earliest known results in class field theory. It says: Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con- tained in a cyclotomic extension. Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q) th is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an n root of unity. This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved, but elementary, and uses the theory of higher ramification groups. The second is a simple application of the main results of class field theory, which classifies abelian extension of an arbitrary number field. An Elementary Proof Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s original proof. The particular strategy used here is given as a series of exercises in Marcus [1]. Minkowski’s Theorem We first prove a classical result due to Minkowski. Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such an extension is ramified at some prime p ∈ Z. Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider the embedding: r s A −→ R ⊕ C x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x)) where the σi are the real embeddings of K and the τi are the complex embeddings, with one embedding chosen from each conjugate pair, so that n = r + 2s.
    [Show full text]
  • The Kronecker-Weber Theorem
    18.785 Number theory I Fall 2017 Lecture #20 11/15/2017 20 The Kronecker-Weber theorem In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to- one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of Q(ζm) under which H can be viewed as the character group of the finite abelian group Gal(K=Q) and the Dedekind zeta function of K factors as Y ζK (x) = L(s; χ): χ2H Now suppose we are given an arbitrary finite abelian extension K=Q. Does the character group of Gal(K=Q) correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function ζK (s) as a product of Dirichlet L-functions? The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree. Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [5]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14] 20.1 Local and global Kronecker-Weber theorems We now state the (global) Kronecker-Weber theorem.
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • Branching Laws for Classical Groups: the Non-Tempered Case
    BRANCHING LAWS FOR CLASSICAL GROUPS: THE NON-TEMPERED CASE WEE TECK GAN, BENEDICT H. GROSS AND DIPENDRA PRASAD August 18, 2020 ABSTRACT. This paper generalizes the GGP conjectures which were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the nongeneric L-packets arising from Arthur parameters. The paper introduces the key no- tionof a relevant pair of A-parameters which governs the branching laws for GLn and all classical groups overboth local fields and global fields. It plays a role for all the branching problems studied in [GGP] including Bessel models and Fourier-Jacobi models. CONTENTS 1. Introduction 1 2. Notation and Preliminaries 8 3. Relevant Pair of A-Parameters 10 4. Correlator 12 5. Local Conjecture for GLn 15 6. Local Conjecture for Classical Groups 23 7. A Conjecture for A-packets 25 8. A Special Case of the Conjecture 31 9. Global Conjecture 34 10. Revisiting the Global Conjecture 43 11. Low Rank Examples 46 12. Automorphic Descent 55 13. L-functions: GL case 59 14. L-functions: Classical Groups 63 References 67 arXiv:1911.02783v2 [math.RT] 17 Aug 2020 1. INTRODUCTION This paper is a sequel to our earlier work [GP1, GP2, GGP, GGP2], which discussed several restriction (or branching) problems in the representation theory of classical groups. In the local case, the conjectural answer was given in terms of symplectic root numbers 1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E55. WTG is partially supported by an MOE Tier 2 grant R146-000-233-112. DP thanks Science and En- gineering research board of the Department of Science and Technology, India for its support through the JC Bose National Fellowship of the Govt.
    [Show full text]
  • ON R-EXTENSIONS of ALGEBRAIC NUMBER FIELDS Let P Be a Prime
    ON r-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS KENKICHI IWASAWA1 Let p be a prime number. We call a Galois extension L of a field K a T-extension when its Galois group is topologically isomorphic with the additive group of £-adic integers. The purpose of the present paper is to study arithmetic properties of such a T-extension L over a finite algebraic number field K. We consider, namely, the maximal unramified abelian ^-extension M over L and study the structure of the Galois group G(M/L) of the extension M/L. Using the result thus obtained for the group G(M/L)> we then define two invariants l(L/K) and m(L/K)} and show that these invariants can be also de­ termined from a simple formula which gives the exponents of the ^-powers in the class numbers of the intermediate fields of K and L. Thus, giving a relation between the structure of the Galois group of M/L and the class numbers of the subfields of L, our result may be regarded, in a sense, as an analogue, for L, of the well-known theorem in classical class field theory which states that the class number of a finite algebraic number field is equal to the degree of the maximal unramified abelian extension over that field. An outline of the paper is as follows: in §1—§5, we study the struc­ ture of what we call T-finite modules and find, in particular, invari­ ants of such modules which are similar to the invariants of finite abelian groups.
    [Show full text]
  • On the Class Group and the Local Class Group of a Pullback
    JOURNAL OF ALGEBRA 181, 803]835Ž. 1996 ARTICLE NO. 0147 On the Class Group and the Local Class Group of a Pullback Marco FontanaU Dipartimento di Matematica, Uni¨ersitaÁ degli Studi di Roma Tre, Rome, Italy View metadata, citation and similar papers at core.ac.ukand brought to you by CORE provided by Elsevier - Publisher Connector Stefania GabelliU Dipartimento di Matematica, Uni¨ersitaÁ di Roma ``La Sapienza'', Rome, Italy Communicated by Richard G. Swan Received October 3, 1994 0. INTRODUCTION AND PRELIMINARY RESULTS Let M be a nonzero maximal ideal of an integral domain T, k the residue field TrM, w: T ª k the natural homomorphism, and D a proper subring of k. In this paper, we are interested in deepening the study of the Ž.fractional ideals and of the class group of the integral domain R arising from the following pullback of canonical homomorphisms: R [ wy1 Ž.DD6 6 6 Ž.I w6 TksTrM More precisely, we compare the Picard group, the class group, and the local class group of R with those of the integral domains D and T.We recall that as inwx Bo2 the class group of an integral domain A, CŽ.A ,is the group of t-invertibleŽ. fractional t-ideals of A modulo the principal ideals. The class group contains the Picard group, PicŽ.A , and, as inwx Bo1 , U Partially supported by the research funds of Ministero dell'Uni¨ersitaÁ e della Ricerca Scientifica e Tecnologica and by Grant 9300856.CT01 of Consiglio Nazionale delle Ricerche. 803 0021-8693r96 $18.00 Copyright Q 1996 by Academic Press, Inc.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]