Geology and Ore Deposits of the Lordsburg Mining District Hidalgo County, New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Ore Deposits of the Lordsburg Mining District Hidalgo County, New Mexico UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 885 GEOLOGY AND ORE DEPOSITS OF THE LORDSBURG MINING DISTRICT HIDALGO COUNTY, NEW MEXICO BY SAMUEL G. LASKY Prepared in cooperation with the STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO SCHOOL OF MINES UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1938 For sale by the Superintendent of Documents, Washington, D. C. - - - - Price $1.25 (Paper) CONTENTS Page Abstract.________._.._-_________-_---___-_-_-_-_-_-_-_._..._._._. 1 Introduction.__________-_-___-___-___-_-__----_--..._-_-...__..__. 2 Scope of the report.____________---_---_---_--__..-____....__.. 2 Acknowledgments- _-----_---_-----_-_--------.--___-__.._.--.. 3 Bibliography_ __._____.___._-_-_--__.___-_______.___.._..__.. 4 Geography. _______.___._-_-_._-_---_-_---_---_---__-__--.._.-_-.. 5 Location of the district.___--___----_-_-------_-__--.._._.___._. 5 Climate and vegetation.______._-.-_-_.-_-._....._...__..____.. 6 Topography.____.._.____--__-----------_---_---_._-_.._.._-.. 7 Surface and underground waters..--._-_----._-_-...-.-..____.... 8 Geology._.__________..________-._------_---------_.--_-_-__.._-.. 9 General sequence and age of the rocks.___--.-._._..._.___._._... 9 Earlier (Lower Cretaceous) volcanic rocks_.-----._.--...._.__.... 11 Basalt.. ._____.......__.__-...._..---....__....__. _..__.. 11 Intrusive volcanic breccias..----_---.------_.._-_..._..._.__ 13 Intrusive rhyolite..._____-_--_--______-_-__.-.._.__..____._ 14 Late Cretaceous or early Tertiary intrusives. _._._._._._.___._.__ 14 Porphyritic granodiorite..._--_______-------___---_-_-_.--__ 14 Granodiorite porphyry and aplite dikes.----.._....._._._._... 15 Quartzlatite dikes_-_-_-_----------_---_---------_-_-_--_-- 15 Felsite dikes_._____-____.---.---------_.--..----_.___...-. 16 Later (MioceneY) volcanic rocks...----_-.---_---_.--___--____._. 16 Structure...__-____-_-------_-----------------_-----_---_-_--- 17 Attitude of the rocks._____------_-_---_---_.--.-_.___.____ 17 Faults....._...__.....-.--------..-----.---.----------.-- 20 Interpretation of geologic history.__-_-_-_---_-_-___._-_-_-___-__ 24 Ore deposits.____________-________-------------_- -.-.--------.--__ 25 History of mining and production______-_--._______-_-_.________ 25 Form and structure of the deposits.__---.-_.--___._-.._._._..... 29 Vein filling._________._._____-------------_-.-_-.---_-_-_.--_- 30 General features..________.--_-----------_._-.-----___--_._ 30 First stage of mineralization..___..-_.------.__.___.....__._ 34 Second stage of mineralization. .___-_---._-._..-_______.___. 35 Hydrothermal leaching..____-_---_-.---_---_____-___-_-_-.. 37 Third stage of mineralization.--. __-_----------------------- 40 Fourth and fifth stages of mineralization_____________________ 40 Sixth stage of mineralization.------------------------------- 41 Oxidation and enrichment-_____________--------_-_---_-_-_.__-- 41 Future operations in the Lordsburg district_.._-__--_-.-.__-____...___ 42 The mines.__.._____.__._---_-_._._---_-------------_-----_------- 44 Eighty-five mine-___-_......__--_-_---_-----_-_-_---___-_-_--- 44 General features.-_-....._---_-----_-------_-_---_-__--_--- 44 Geologic relations._____...------__---__-___-_-----_____--_ 45 Ore deposits.____________---_--____--__-_--__-_-_---_-_-.- 45 Continuation of ore beyond known limits._-_..___--_----___--_ 46 in 1V CONTENTS The mines Continued. Page Bonney-mine.______-____-----_--__-_--_--____________________ 48 Location _______--_-____-_-_--_-__-_________-____--_______ 48 History and production.___________________________________ 48 Mine workings__-__-------_-------_-_--___-__--__-_---_-_- 49 Geology and ore deposits.__________________________________ 49 Future prospecting._______________________________________ 50 Anita mine.____.___-______-__--__--_-_-______________.__-____ 51 General features.__________________________________________ 51 Geology and ore deposits-__--___---___-___________-___-____ 51 Atwood (Alamo) mine.________________________________________ 53 General features_________---__-_-___________________l____ 53 Geology and ore deposits-___________________.______-___._-__ 53 Henry Clay mine___--_--__---_----_--_---_-_----_--_--_------- 54 Misers Chest (Lena) mine-_____________________________________ 55 Leitendorf camp (Pyramid district)______________________________ 56 General features-__--___---------_---_-_-----------_-_-_-_- 56 History and production-____-_-_______-_______-__--_-_____- 56 Geology and ore deposits-_---_--_________-________-___-____ 57 Venus mine_______________________________________________ 58 Last Chance mine-____---------__--l_-____-_____--__-____- 58 Nellie Ely and Robert E. Lee mines-__-____________--_--___- 59 __________________________________________________________ 61 ILLUSTRATIONS Page PLATE 1. Geologic map and sections of the north end of the Pyramid Mountains, Hidalgo County, N. Mex___________________ 10 2. A, B, Aerial photograph, with explanation, of main part of the Lordsburg mining district, N. Mex_---_--__-___------_-_- 10 3. Geologic map and sections of the Lordsburg mining district, Hidalgo County, N. Mex_____._________________________ 10 4. A, Volcanic necks extending above the alluvium south and east of Gary siding; B, Steeply dipping bedded rhyolite breccia capping hill northeast of Aberdeen Peak __________________ IS 5. Outline map and sectionalized isometric diagram of the Lords­ burg district, N. Mex., showing relation of faults and veins to the granodiorite stock________________________________ 18 6. Close view of one of the prominent quartz outcrops typical of the Anita-Atwood group of veins-__--_____--__--_---___- 26 7. View looking westward toward Lee Peak along the Florence May-Lone Star-Summit vein____________________________ 27 8. A, Photomicrograph of tourmalinized granodiorite; B, Drusy breccia ore from the Eighty-five mine____________________ 34 9. Breccia ore from which most rock fragments have been leached. 34 10. A, Fine-textured honeycomb of quartz, specularite, and chal- copyrite; B, Porous "worm-eaten" chalcopyrite and sphalerite. 34 11. Photomicrographs of altered rocks: A, Chloritized, sericitized basalt; B, Altered granodiorite-_-_____--___-___--.____-_ 35 CONTENTS Page PLATE 12. A, Honeycombed ore coated with quartz and chalcopyrite; B, Specimen of ore from the Eighty-five mine showing first three stages of mineralization____________________________ 42 13. Vertical projection of the Eighty-five mine, with oversheet show­ ing vertical projection of the Eighty-five vein __________ In pocket 14. Claim map of the Lordsburg mining district...-,.___________ 42 15. Geologic plans of the 650-, 1,050-, and 1,500-foot levels of the Eighty-five mine and surface geology along the outcrop. In pocket 16. Geologic sections through the Eighty-five mine._____________ 50 17. Plan and projection of the Bonney mine.___________________ 50 18. Geologic sections of the Bonney mine._____________________ 50 19. Geologic plan of the fifth level of the Bonney mine_____----_- 50 20. Plan and projection of the Anita mine_-__-_____________ In pocket 21. Geologic sections of the Anita mine____-___________________ 50 22. Geologic plans and section of the Atwood mine______________ 58 23. Geologic level maps of the Misers Chest mine._______________ 58 24. Plan and vertical projection of the Last Chance mine...------ 58 25. Plan and section of the Nellie Bly mine____-_-_-____________ 58 FIGURE 1. Map of New Mexico and eastern Arizona, showing location of the Lordsburg mining district._________________________ 6 2. Sketch map of the intrusive breccia at Atwood Hill__________ 13 3. Map of the northern horn of the granodiorite stock._________ 19 4. Direction and amount of dip of the faults of the Lordsburg mining district---______-__-_-_--_---------_-_____---__- 21 5. Similar fault patterns formed by shearing couples acting in the same planes but in opposite directions.___________________ 23 6. Details of veins in the Lordsburg mining district,____________ 31 7. Drusy breccia ore, Lordsburg mining district._______________ 32 8. Mineral succession in the Lordsburg mining district and the relation of mineral deposition to other events._____________ 33 9. Variations in aggregate length of stoping ore on the different levels of the Eighty-five mine to the 1,650-foot level------- 47 GEOLOGY AND OEE DEPOSITS OF THE LOKDSBURG MINING DISTRICT, HIDALGO COUNTY, NEW MEXICO By SAMUEL G. LASKY ABSTRACT The Lordsburg copper-mining district occupies the low pyramidal hills that form the northern part of the Pyramid Mountains, immediately southwest of Lordsburg, N. Mex. From 1904 to 1933 the Lordsburg district produced 1,671,669 tons of ore con­ taining copper, gold, silver, and lead valued at $19,482,671 and was one of the most productive districts in New Mexico. Mining activity depended almost en­ tirely upon an unusual demand for siliceous fluxing ore like that of the Lords­ burg district, and it ended abruptly with a cessation of this demand in 1931. Resumption of mining is dependent on increased metal prices or on a renewed demand for fluxing ore by the copper smelters. The oldest rocks exposed in the Lordsburg district are basalt flows, of Co- manche (Lower Cretaceous) age, at least 2,000 feet thick, intruded by plugs of basalt and rhyolite breccias and by plugs of white rhyolite. Interbedded breccia and thin flows derived from some of the breccia plugs are present here and there. An irregular, horseshoe-shaped stock of granodiorite and related dikes of granodiorite porphyry and aplite intrude the volcanic rocks. The cover has barely been removed from the northern part of the stock, and the present topography there gives a general picture of the original surface of the mass. Roof pendants in the stock and outliers of granodiorite bordering it are com­ mon.
Recommended publications
  • By Douglas P. Klein with Plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado
    U.S DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein with plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado Open-file Report 95-506 1995 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards. The use of trade, product, or firm names in this papers is for descriptive purposes only, and does not imply endorsement by the U.S. Government. STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein CONTENTS INTRODUCTION .................................................. 1 DEEP SEISMIC CRUSTAL STUDIES .................................. 4 SEISMIC REFRACTION DATA ....................................... 7 RELIABILITY OF VELOCITY STRUCTURE ............................. 9 CHARACTER OF THE SEISMIC VELOCITY SECTION ..................... 13 DRILL HOLE DATA ............................................... 16 BASIN DEPOSITS AND BEDROCK STRUCTURE .......................... 20 Line 1 - Playas Valley ................................... 21 Cowboy Rim caldera .................................. 23 Valley floor ........................................ 24 Line 2 - San Luis Valley through the Alamo Hueco Mountains ....................................... 25 San Luis Valley ..................................... 26 San Luis and Whitewater Mountains ................... 26 Southern
    [Show full text]
  • Summary of Us Geological Survey Ground-Water
    SUMMARY OF U.S. GEOLOGICAL SURVEY GROUND-WATER- FLOW MODELS OF BASIN-FILL AQUIFERS IN THE SOUTHWESTERN ALLUVIAL BASINS REGION, COLORADO, NEW MEXICO, AND TEXAS By John Michael Kernodle U.S. GEOLOGICAL SURVEY Open-File Report 90-361 Albuquerque, New Mexico 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL |SURVEY Dallas L. Peck, E'irector For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Water Resources Division Books and Open-File Reports Pinetree Office Park Federal Center 4501 Indian School Rd. NE, Suite 200 Box 25425 Albuquerque, New Mexico 87110 Denver, Colorado 80225 Foreword The Regional Aquifer-System Analysis Program The Regional Aquifer-System Analysis (RASA) program was started in 1978 after a congressional mandate to develop quantitative appraisals of the major ground-water systems of the United States. The RASA program represents a systematic effort to study a number of the Nation's most important aquifer systems that, in aggregate, underlie much of the country and that represent important components of the Nation's total water supply. In general, the boundaries of these studies are identified by the hydrologic extent of each system, and accordingly transcend the political subdivisions to which investigations have often arbitrarily been limited in the past. The broad objective for each study is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabilities that will contribute to the effective management of the system. The use of computer simulation is an important element of the RASA studies, both to develop an understanding of the natural, undisturbed hydrologic system and any changes brought about by human activities as well as to provide a means of predicting the regional effects of future pumping or other stresses.
    [Show full text]
  • Major Geologic Structures Between Lordsburg, New Mexico, and Tucson, Arizona Harald D
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/29 Major geologic structures between Lordsburg, New Mexico, and Tucson, Arizona Harald D. Drewes and C. H. Thorman, 1978, pp. 291-295 in: Land of Cochise (Southeastern Arizona), Callender, J. F.; Wilt, J.; Clemons, R. E.; James, H. L.; [eds.], New Mexico Geological Society 29th Annual Fall Field Conference Guidebook, 348 p. This is one of many related papers that were included in the 1978 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • New Mexico Geological Society Spring Meeting
    New Mexico Geological Society Spring Meeting Friday, April 27, 2012 Macey Center, 801 Leroy Place NM Tech Campus Socorro, New Mexico 87801 Table of Contents Schedule of Events p. 2 Abstracts, alphabetically by first author p. 6 NMGS Executive Committee President: Nelia Dunbar Vice President: Greg Mack Treasurer: Virginia McLemore Secretary: Mary Dowse Past President: Barry Kues 2011 Spring Meeting Committee Technical Program Chairs: Kate Zeigler and Gary Weissmann Logistical Chair: Dave Love Registration Chair: Connie Apache 1 SCHEDULE OF EVENTS – 2011 NMGS ANNUAL SPRING MEETING, REGISTRATION 7:30 – 8:20, ENTRY/FOYER, MACEY CENTER SESSION 1: THEME SESSION: EVALUATING SESSION 3: VOLCANICS AND TECTONICS HOW CONTINENTAL SEDIMENTARY - AUDITORIUM BASINS FILL: DEVELOPMENT AND PRESERVATION OF SEDIMENTARY 10:15-10:30 A. Tafoya, L. Crossey, K. Karlstrom, V. SUCCESSIONS - AUDITORIUM Polyak, Y. Asmerom and C. Cox URANIUM-SERIES DATING OF TRAVERTINE 8:20 – 8:30 THEME SESSION-WELCOME: FROM SODA DAM, NEW MEXICO: Gary Weissmann CONSTRUCTING A HISTORY OF DEPOSITION, WITH IMPLICATIONS FOR LANDSCAPE 8:30 – 9:00 KEYNOTE TALK: Gary Weissmann, EVOLUTION, PALEOHYDROLOGY AND Adrian Hartley, Gary Nichols and Louis Scuderi PALEOCLIMATOLOGY THE DISTRIBUTIVE FLUVIAL SYSTEM (DFS) PARADIGM: RE-EVALUATING FLUVIAL 10:30-10:45 J. Ricketts, A. Priewisch, M. Kolomaznik FACIES MODELS BASED ON OBSERVATIONS and K. Karlstrom FROM MODERN CONTINENTAL CALCITE-FILLED FRACTURES IN SEDIMENTARY BASINS TRAVERTINE USED TO CONSTRAIN THE TIMING AND ORIENTATION OF 9:00 – 9:15 K. McNamara and G. Weissmann, QUATERNARY EXTENSION ALONG THE GEOMORPHIC CHARACTERIZATION OF THE WESTERN MARGIN OF THE RIO GRANDE GILBERT RIVER DISTRIBUTIVE FLUVIAL RIFT, CENTRAL NEW MEXICO SYSTEM (DFS) AND IMPLICATIONS FOR CRETACEOUS COASTAL FLUVIAL 10:45 – 11:00 G.
    [Show full text]
  • Mation to Investigate the Role of Natural and for Which Written
    Reconstruction of Precipitation and PDSI from Tree-Ring Chronologies Developed in Mountains of New Mexico, USDA and Sonora, Mexico Item Type text; Proceedings Authors Villanueva-Diaz, Jose; McPherson, Guy R. Publisher Arizona-Nevada Academy of Science Journal Hydrology and Water Resources in Arizona and the Southwest Rights Copyright ©, where appropriate, is held by the author. Download date 24/09/2021 04:36:16 Link to Item http://hdl.handle.net/10150/297002 RECONSTRUCTION OF PRECIPITATION AND PDSI FROM TREE -RING CHRONOLOGIES DEVELOPED IN MOUNTAINS OF NEW MEXICO, USA AND SONORA, MEXICO Jose Villanueva -Diaz and Guy R. McPherson) Long quantitative records of year -by -year meteor- Tertiary volcanic activity was renewed with erup- ological observations are limited or nonexistent in tions of rhyolite, tuffs, and basalt (Arras 1979; the southwestern United States and northern Stone and O'Brian 1990; Wagner 1977). Mexico. Such records are invaluable to researchers The Sierra los Ajos are located in Sonora, Mex- studying paleoclimate dynamics and forcing func- ico (30 °55'N latitude, 109°55W longitude), about tions that influence the climate system. 100 km southwest of the Animas Mountains. The Trees store information on their annual rings main peak rises above 2600 m (COTECOCA 1973) about climates and their effects on the structure (Figure 1). The Sierra los Ajos comprise a complex and composition of local forest ecosystems. There- geologic formation characterized by a heterogene- fore, tree rings have been used as sources of infor- ous lithic composition. Outcrops from Precambri- mation to investigate the role of natural and an and Holocene age are found in these mountains anthropogenic disturbances as well as environ- (Aponte 1974).
    [Show full text]
  • Plan for the Recovery of Desert Bighorn Sheep in New Mexico 2003-2013
    PLAN FOR THE RECOVERY OF DESERT BIGHORN SHEEP IN NEW MEXICO 2003-2013 New Mexico Department of Game and Fish August 2003 Executive Summary Desert bighorn sheep (Ovis canadensis mexicana) were once prolific in New Mexico, occupying most arid mountain ranges in the southern part of the state. Over-hunting, and disease transmission from livestock are 2 primary reasons for the dramatic decline in bighorn sheep numbers throughout the west during the early 1900s. In 1980, desert bighorn were placed on New Mexico’s endangered species list. From 1992-2003, approximately 25% of bighorn were radiocollared to learn causes of mortality driving this species towards extinction. Approximately 85% of all known-cause non-hunter killed radiocollared individuals have been killed by mountain lions. Despite the lack of a native ungulate prey base in desert bighorn range, mountain lion populations remain high, leading to the hypothesis that mountain lions are subsidized predators feeding on exotic ungulates, including cattle. Lack of fine fuels from cattle grazing have resulted in a lack of fire on the landscape. This has lead to increased woody vegetation which inhibits bighorn’s ability to detect and escape from predators. Bighorn numbers in spring 2003 in New Mexico totaled 213 in the wild, and 91 at the Red Rock captive breeding facility. This is in spite of releasing 266 bighorn from Red Rock and 30 bighorn from Arizona between 1979 and 2002. Several existing herds of desert bighorn likely need an augmentation to prevent them from going extinct. The presence of domestic sheep and Barbary sheep, which pose risks to bighorn from fatal disease transmission and aggression, respectively, preclude reintroduction onto many unoccupied mountain ranges.
    [Show full text]
  • U.S. Department of the Interior U.S. Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources 1997 MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Cover: View looking south to the east side of the northeastern Organ Mountains near Augustin Pass, White Sands Missile Range, New Mexico. Town of White Sands in distance. (Photo by Susan Bartsch-Winkler, 1995.) MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO By SUSAN BARTSCH-WINKLER, Editor ____________________________________________________ U. S GEOLOGICAL SURVEY OPEN-FILE REPORT 97-521 U.S. Geological Survey Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources, Socorro U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Shaefer, Interim Director For sale by U.S. Geological Survey, Information Service Center Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO Susan Bartsch-Winkler, Editor Summary Mimbres Resource Area is within the Basin and Range physiographic province of southwestern New Mexico that includes generally north- to northwest-trending mountain ranges composed of uplifted, faulted, and intruded strata ranging in age from Precambrian to Recent.
    [Show full text]
  • Newsmac Spring 2020
    NewsMAC Spring 2020 NewsMAC Newsletter of the New Mexico Archeological Council P.O. Box 25691 Albuquerque, NM 87125 NewsMAC Spring 2020 (2020-1) Contents PRESIDENT’S WELCOME 1 EDITOR’S INTRODUCTION 2 PROGRESS UPDATE: ANCESTRAL PUEBLO AGRICULTURAL LANDSCAPES PROJECT 3 Kaitlyn E. Davis, Ph.D. Candidate, University of Colorado, Boulder RADIOCARBON DATING OF A THERMAL FEATURE AT A TIPI RING SITE AT THE 4 DEHAVEN RANCH AND PRESERVE Emily J. Brown, Aspen CRM Consulting – NMAC Grant Recipient INVESTIGATIONS ON THE BOX CANYON VILLAGE SITE (LA 4980), AN ANIMAS PHASE VILLAGE IN HIDALGO COUNTY, NM 11 Thatcher A. Rogers, University of New Mexico – NMAC Grant Recipient THE AZOTEA PEAK RING MIDDEN SURVEY: A CULTURAL LANDSCAPE OF SUBSISTENCE AND FEASTING AROUND THE AZOTEA MESA, EDDY COUNTY, NM 16 Ryan Scott Hechler, Statistical Research, Inc. DATA RECOVERY AT SEVEN SITES SOUTH OF SANTA FE FOR NM GAS CO. Kye Miller, PaleoWest 20 SOUTH BY SOUTHWEST: ARCHAEOLOGICAL DICHOTOMIES, ORTHODOXIES, AND 21 HETERODOXIES IN THE MOGOLLON OR WERE THOSE MIGRANTS PROPERLY DOCUMENTED? Marc Thompson 28 REPORT ON 2019 NMAC FALL CONFERENCE: COLLABORATIVE ARCHAEOLOGY, INDIGENOUS ARCHAEOLOGY, AND TRIBAL HISTORIC PRESERVATION IN THE SOUTHWESTERN UNITED STATES Michael Spears NMAC CONTACTS 30 NewsMAC Spring 2020 President’s Welcome Greetings all and welcome to this pandemic issue of NewsMAC. I want to say thank you to Tamara Jager Stewart for volunteering to fill our newsletter editor vacancy this year, and working with our NMAC Past President Kye Miller to get this issue out to the membership during this busy and stressful time for all of us. I hope everyone is healthy and safe, and dealing well with the challenges of teleworking, videoconferencing, and Zoom-meeting fatigue—or the even greater challenges of safely conducting fieldwork during the COVID-19 pandemic.
    [Show full text]
  • Geophysics, Geology, and Geothermal Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Christian S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/29 Geophysics, geology, and geothermal leasing status of the Lightning Dock KGRA, Animas Valley, New Mexico Christian S. Smith, 1978, pp. 343-348 in: Land of Cochise (Southeastern Arizona), Callender, J. F.; Wilt, J.; Clemons, R. E.; James, H. L.; [eds.], New Mexico Geological Society 29th Annual Fall Field Conference Guidebook, 348 p. This is one of many related papers that were included in the 1978 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Klondike Basin--Late Laramide Depocenter in Southern New Mexico
    KlondikeBasin-late Laramide depocenter insouthern New Mexico by TimothyF. Lawton and Busse// E. Clemons, Departmentof Earth Sciences, New Mexico State University, Las Cruces, NM 88003 Abstract It was deposited in alluvial-fan, fluvial, Basinis thusa memberof a groupof late and plava environments adiacent to the Laramidebasins developed in and ad- The Klondike Basindefined in this pa- Lund uftift. Conglomerates'inthe lower iacentto theforeland in Paleogenetime. per occurs mostly in the subsurfaceof part of the section were derived from southwestem New Mexico, north of the nearby sedimentary shata of the uplift; Introduction Cedar Mountain Range and southwest volcanic arenites in the middle and up- Mexico and of Deming. The basin is asymmetric, per part of the section were derived from In southwestern New thickening from a northern zero edge in older volcanic rocks, including the Hi- southeastern Arizona, the Laramide the vicinity of Interstate 10 to a maxi- dalgo Formation, lying to the west and orogeny created a broad belt of north- mum preservedthickness of2,750 ft (840 northwest, and possibly to the north as west-trending faults and folds during the m) of sedimentary strata about 3 mi (5 well. approximate time span of 75-55 Ma (Da- km) north of the sbuthembasin margin. The age of the Lobo Formation and vis, 1979;Drewes, 1988).In contrast with The southem basin margin is a reverse development of the Klondike Basin are Laramide deformation of the Rocky fault or fault complex that bounds the bracketedas early to middle Eocene.The Mountain region, extensivevolcanism ac- Laramide Luna uplift, alsodefined here. asdasts Hidalgo Formation, which occurs companied shortening in Arizona and New The uplift consists of Paleozoic strata in the Lobo, has an upper fission-track has been inter- overlain unconformably by mid-Tertiary ageof 54.9+2.7Ma (Marvinetal.,1978\.
    [Show full text]
  • Delayed and Rapid Deglaciation of Alpine Valleys in the Sawatch Range, Southern
    Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA Joseph P. Tulenko1, William Caffee1, Avriel D. Schweinsberg1, Jason P. Briner1, Eric M. 5 Leonard2. 1. Department of Geology, University at Buffalo, Buffalo, NY 14260, USA 2. Department of Geology, Colorado College, Colorado Springs, CO 80903, USA 10 Abstract We quantify retreat rates for three alpine glaciers in the Sawatch Range of the southern Rocky Mountains following the Last Glacial Maximum using 10Be ages from ice-sculpted, valley-floor bedrock transects and statistical analysis via the BACON program in R. Glacier retreat in the Sawatch Range from at (100%) or near (~83%) Last 15 Glacial Maximum extents initiated between 16.0 and 15.6 ka and was complete by 14.2 – 13.7 ka at rates ranging between 35.6 to 6.8 m a-1. Deglaciation in the Sawatch Range commenced ~2 – 3 kyr later than the onset of rising global CO2, and prior to rising temperatures observed in the North Atlantic region at the Heinrich Stadial 1/Bølling transition. However, deglaciation in the Sawatch Range approximately aligns 20 with the timing of Great Basin pluvial lake lowering. Recent data-modeling comparison efforts highlight the influence of the large North American ice sheets on climate in the western United States, and we hypothesize that recession of the North American ice sheets may have influenced the timing and rate of deglaciation in the Sawatch Range. 1 While we cannot definitively argue for exclusively North Atlantic forcing or North 25 American ice sheet forcing, our data demonstrate the importance of regional forcing mechanisms on past climate records.
    [Show full text]
  • Bulletin 39: the Metal Resources of New Mexico and Their Economic
    BULLETIN 3 9 The Metal Resources of New Mexico and Their Economic Features Through 1954 A revision of Bulletin 7, by Lasky and Wootton, with detailed information for the years 1932-1954 BY EUGENE CARTER ANDERSON 1957 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EX OFFICIO THE HONORABLE EDWIN L. MECHEM………...Governor of New Mexico MRS. GEORGIA L. LUSK ......................Superintendent of Public Instruction APPOINTED MEMBERS ROBERT W. BOTTS ....................................................................Albuquerque HOLM O. BURSUM, JR. .....................................................................Socorro THOMAS M. CRAMER .................................................................... Carlsbad JOHN N. MATHEWS, JR. ...................................................................Socorro RICHARD A. MATUSZESKI ......................................................Albuquerque Contents Page INTRODUCTION .......................................................................................................... 1 Purpose and Scope of Bulletin ..................................................................................... 1 Other Reports Dealing With the Geology and Mineral Resources of New Mexico ......................................................................................................
    [Show full text]