Glycosaminoglycan Biosynthesis in Zebrafish

Total Page:16

File Type:pdf, Size:1020Kb

Glycosaminoglycan Biosynthesis in Zebrafish Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1143 Glycosaminoglycan Biosynthesis in Zebrafish BEATA FILIPEK-GÓRNIOK ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9368-4 UPPSALA urn:nbn:se:uu:diva-264269 2015 Dissertation presented at Uppsala University to be publicly examined in C8:305, BMC, Husargatan 3, Uppsala, Friday, 27 November 2015 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Associate Professor Kay Grobe (Institute for Physiological Chemistry and Pathobiochemistry, University of Münster). Abstract Filipek-Górniok, B. 2015. Glycosaminoglycan Biosynthesis in Zebrafish. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1143. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9368-4. Proteoglycans (PGs) are composed of highly sulfated glycosaminoglycans chains (GAGs) attached to specific core proteins. They are present in extracellular matrices, on the cell surface and in storage granules of hematopoietic cells. Heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) GAGs play indispensable roles in a wide range of biological processes, where they can serve as protein carriers, be involved in growth factor or morphogen gradient formation and act as co-receptors in signaling processes. Protein binding abilities of GAGs are believed to be predominantly dependent on the arrangement of the sugar modifications, sulfation and epimerization, into specific oligosaccharide sequences. Although the process of HS and CS/DS assembly and modification is not fully understood, a set of GAG biosynthetic enzymes have been fairly well studied and several mutations in genes encoding for this Golgi machinery have been linked to human genetic disorders. This thesis focuses on the zebrafish N-deacetylase/N-sulfotransferase gene family, encoding key enzymes in HS chain modification, as well as glycosyltransferases responsible for chondroitin/dermatan sulfate elongation present in zebrafish. Our data illustrates the strict spatio-temporal expression of both the NDST enzymes (Paper I) and CS/DS glycosyltransferases (Paper II) in the developing zebrafish embryo. In Paper III we took advantage of the four preexisting zebrafish mutants with defective GAG biosynthesis. We could demonstrate a relation between HS content and the severity of the pectoral fin defects, and additionally correlate impaired HS biosynthesis with altered chondrocyte intercalation. Interestingly, altered CS biosynthesis resulted in loss of the chondrocyte extracellular matrix. One of the main findings was the demonstration of the ratio between the HS biosynthesis enzyme Extl3 and the Csgalnact1/Csgalnact2 proteins, as a main factor influencing the HS/CS ratio. In Paper IV we used the newly developed CRISPR/Cas9 technique to create a collection of zebrafish mutants with defective GAG biosynthetic machineries. Lack of phenotypes linked to null-mutations of most of the investigated genes is striking in this study. Keywords: Heparan sulfate, chondroitin/dermatan sulfate, biosynthesis, development, N- deacetylase N-sulfotransferase, glycosyltransferases, morpholino, CRISPR-Cas9 Beata Filipek-Górniok, Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-75123 Uppsala, Sweden. © Beata Filipek-Górniok 2015 ISSN 1651-6206 ISBN 978-91-554-9368-4 urn:nbn:se:uu:diva-264269 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-264269) Nothing that comes to easy has any significance. Jacek Hugo-Bader, journalist and reporter Supervisors: Lena Kjellén, Professor Department of Medical Biochemistry and Microbiology Uppsala University Uppsala, Sweden Johan Ledin, Researcher Department of Organismal Biology Uppsala University Uppsala, Sweden Faculty opponent: Kay Grobe, Associate Professor Institute for Physiological Chemistry and Pathobiochemistry University of Münster Münster, Germany Examining Committee: Dan Larhammar, Professor Department of Neuroscience, Pharmacology Uppsala University Uppsala, Sweden Hiroshi Nakato, Associate Professor Department of Genetics, Cell Biology and Development University of Minnesota Minnesota, US Sally Stringer, Honorary Lecturer/Editorial team leader Cardiovascular Division University of Manchester/HealthCare21 Communications Ltd, Manchester, UK Chairperson: Jin-ping Li, Professor Department of Medical Biochemistry and Microbiology Uppsala University Uppsala, Sweden Cover: Adult female zebrafish. Drawing by Beata Filipek-Górniok, 2015. List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Filipek-Górniok B., Carlsson P., Haitina T., Habicher J., Ledin J., Kjellén L. (2015) The NDST gene family in zebrafish: role of NDST1b in pharyngeal arch formation. PLoS One, 10(3):e0119040. doi: 10.1371/journal.pone.0119040. II Filipek-Górniok B., Holmborn K., Haitina T., Habicher J., Oliveira M.B., Hellgren C., Eriksson I., Kjellén L., Kreuger J., Ledin J. (2013) Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Developmental Dynamics, 242(8):964-75. doi: 10.1002/dvdy.23981. III Holmborn K., Habicher J., Kasza Z., Eriksson A.S., Filipek- Górniok B., Gopal S., Couchman J.R., Ahlberg P.E., Wiweger M., Spillmann D., Kreuger J., Ledin J. (2012) On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis. The Journal of biological chemistry, 287(40):33905-16. IV Habicher J., Filipek-Górniok B., Varshney G., Ahlberg P.E., Burgess S., Kjellén L., Ledin J. (2015) Large-scale generation of zebrafish mutants with defective glycosaminoglycan biosynthesis. Manuscript. Reprints were made with permission from the respective publishers. Additional Publications I Fisher S., Filipek-Górniok B., Ledin J. (2011) Zebrafish Ext2 is necessary for Fgf and Wnt signaling, but not for Hh signaling. BMC Developmental Biology, 11:53. doi: 10.1186/1471-213X-11-53. II Dagälv A., Lundequist A., Filipek-Górniok B., Dierker T., Eriksson I., Kjellén L. (2015) Heparan sulfate structure: methods to study N- sulfation and NDST action. Methods in molecular biology, 1229:189- 200. doi: 10.1007/978-1-4939-1714-3_17. Contents Introduction ...................................................................................................13 Background ...................................................................................................14 Proteoglycans and glycosaminoglycans ...................................................14 Heparan sulfate proteoglycans.............................................................15 Chondroitin/dermatan sulfate proteoglycans .......................................16 Heparan sulfate biosynthesis................................................................16 Chondroitin/dermatan sulfate biosynthesis..........................................19 …and one to rule them all: PAPS.............................................................21 Regulation of the glycosaminoglycans biosynthesis – a puzzle not yet solved. ............................................................................................22 Glycosaminoglycans in biological processes.......................................23 Zebrafish as a model system.....................................................................28 Zebrafish in glycosaminoglycan research............................................30 Method considerations..............................................................................32 Overexpression studies ........................................................................32 Rise and fall of the morpholino technology.........................................32 Selected methods for targeted genome editing in zebrafish ................33 Present investigation .....................................................................................36 Aim ...........................................................................................................36 Paper I ..................................................................................................36 Paper II.................................................................................................37 Paper III ...............................................................................................38 Paper IV ...............................................................................................39 Concluding remarks and future perspectives ................................................41 Populärvetenskaplig sammanfattning ...........................................................43 Acknowledgments.........................................................................................44 References .....................................................................................................46 Abbreviations ADP Adenosine diphosphate APS Adenosine 5’-phosphosulfate ATP Adenosine triphosphate b3gat3 Glucuronyltransferase I BMP Bone morphogenetic protein C4ST Chondroitin sulfate 4-O-sulfotransferase C6ST Chondroitin sulfate 6-O-sulfotransferase 1 CS/DS2ST Chondroitin sulfate/dermatan sulfate 2-O-sulfotransferase CHPF/CHSY2 Chondroitin polymerization factor CHPF2 Chondroitin polymerization factor 2 CHSY1 Chondroitin synthase 1 CHSY3 Chondroitin synthase 3 CS Chondroitin sulfate CSGALNACT, GalNAcT Chondroitin sulfate N-acetyl galactosaminyl transferase DS Dermatan sulfate EXTL Exostosin-like
Recommended publications
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Aberrant Promoter Methylation and Tumor Suppressive Activity of the DFNA5 Gene in Colorectal Carcinoma
    Oncogene (2008) 27, 3624–3634 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ORIGINAL ARTICLE Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma MS Kim1, X Chang1, K Yamashita1, JK Nagpal1, JH Baek2,GWu3, B Trink1, EA Ratovitski1, M Mori4 and D Sidransky1 1Department of Otolaryngology, Head and Neck Cancer Research Division, Johns Hopkins University, Baltimore, MD, USA; 2Department of Genetic Medicine, Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA; 3Karmanos Cancer Institute, Department of Pathology, Wayne State University, Detroit, MI, USA and 4Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Tsurumibaru, Beppu, Japan To identify novel methylated gene promoters, we com- Introduction pared differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of Aberrant gene expression is a characteristic of human 5-aza-20-deoxycytidine (5-aza-dC). Out of 1776 genes cancers, and changes in DNA methylation status can that were initially ‘absent (that is, silenced)’ by gene have profound effects on the expression of genes. Tumor expression array analysis, we selected 163 genes that were suppressor genes (TSGs) display both genetic and increased after 5-aza-dC treatment in at least two of three epigenetic inactivation in human tumors, and the CRC cell lines. The microarray results were confirmed by transcriptional silencing of TSGs has established hy- Reverse Transcription–PCR, and CpG island of the gene permethylation as a common mechanism for loss of promoters were amplified and sequenced for examination TSG function in human cancer (Herman, 1999).
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Chip-Seq Annotation and Visualization How to Add Biological Meaning to Peaks
    ChIP-seq Annotation and Visualization How to add biological meaning to peaks M. Defrance, C. Herrmann, D. Puthier, M. Thomas-Chollier, S Le Gras, J van Helden Our data in the context Custom track uploded by the user (here ESR1 peaks in siGATA3 context) public UCSC annotation/data tracks Typical questions - What are the genes associated to the peaks? ChIP-seq peaks - Are some genomic categories over-represented? - Are some functional categories over-represented? - Are the peaks close to the TSS, …? ChIP-seq peaks Annotation Visualisation Enrichment profiles Annotated peaks Genomic & functional Average Profile near TSS Average Profile near TTS Annotation Genomic location Relation to CpG island 0.30 1.0 2500 0.8 chr start end Gene 0.25 chr15 65294195 65295186 0.6 chrX 19635923 19638359 Chst7 Average Profile Average Profile Average 3000 chr8 33993863 33995559 1500 0.4 0.20 chr10 114236977 114239326 Trhde # of regions # of regions 0.2 Distribution of Peak Heights chrX 69515082 69516482 Gabre 500 chr4 49857142 49858913 Grin3a 1000 −3000 −2000 −1000 0 1000 2000 3000 −3000 −2000 −1000 0 1000 2000 3000 0 5 10 15 chr16 7352861 7353410 Rbfox1 0 0 Relative Distance to TSS (bp) Relative Distance to TTS (bp) chr7 64764156 64765421 Gabra5 ChIP Regions (Peaks) over Chromosomes Average Gene Profile chrX 83436881 83438330 Nr0b1 CGI Shore Distant chr10 120288598 120289143 Msrb3 Multiple 1 Promoter Intergenic 2 chr5 67446361 67446855 Limch1 Gene Body 3 0.8 4 5 6 7 0.6 8 9 Average Profile Average 10 0.4 11 12 Chromosome 13 0.2 14 15 −1000 0 1000 2000 3000 4000 16 Upstream (bp), 3000 bp of Meta−gene, Downstream (bp) 17 18 19 Average Concatenated Exon Profile Average Concatenated Intron Profile X Y 0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 1.0 Chromosome Size (bp) 1.0 0.8 0.8 0.6 0.6 Average Profile Average Profile Average 0.4 0.4 0.2 0.2 0 20 40 60 80 100 0 20 40 60 80 100 Relative Location (%) Relative Location (%) Distribution of Peak Heights 0 5 10 15 ChIP Regions (Peaks) over Chromosomes 1 2 3 4 5 6 7 8 9 10 11 12 Chromosome W.Huang et al.
    [Show full text]
  • New Insight on FGFR3-Related Chondrodysplasias Molecular Physiopathology Revealed by Human Chondrocyte Gene Expression Profiling
    New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling Laurent Schibler, Linda Gibbs, Catherine Benoist-Lasselin, Charles Decraene, Jelena Martinovic, Philippe Loget, Anne-Lise Delezoide, Marie Gonzales, Arnold Munnich, Jean-Philippe Jais, et al. To cite this version: Laurent Schibler, Linda Gibbs, Catherine Benoist-Lasselin, Charles Decraene, Jelena Martinovic, et al.. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling. PLoS ONE, Public Library of Science, 2009, 4, online (10), Non paginé. 10.1371/journal.pone.0007633. hal-01193364 HAL Id: hal-01193364 https://hal.archives-ouvertes.fr/hal-01193364 Submitted on 30 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New Insight on FGFR3-Related Chondrodysplasias Molecular Physiopathology Revealed by Human Chondrocyte Gene Expression Profiling Laurent Schibler1,2, Linda Gibbs1,3, Catherine Benoist-Lasselin1, Charles Decraene4, Jelena Martinovic5,
    [Show full text]
  • DNA Methylation Profiling of the X Chromosome Reveals an Aberrant
    Lleo et al. Clinical Epigenetics (2015) 7:61 DOI 10.1186/s13148-015-0098-9 RESEARCH Open Access DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis Ana Lleo1†, Weici Zhang6†, Ming Zhao2†, Yixin Tan2†, Francesca Bernuzzi1, Bochen Zhu2, Qian Liu2, Qiqun Tan2, Federica Malinverno3, Luca Valenti4, Tingting Jiang2, Lina Tan2, Wei Liao2, Ross Coppel5, Pietro Invernizzi1,6†, Qianjin Lu2*†, David H. Adams7, M. Eric Gershwin6*† and the PBC Epigenetic Study Group Abstract Background: Although the etiology of primary biliary cirrhosis (PBC) remains enigmatic, there are several pieces of data supporting the thesis that a strong genetic predisposition and environmental factors interact to produce a selective loss of tolerance. The striking female predominance of PBC has suggested that this sex predisposition may be secondary to epigenetic alterations on the X chromosome. In the present study, we rigorously defined the X chromosome methylation profile of CD4, CD8, and CD14 cells from 30 PBC patients and 30 controls. Genomic DNA from sorted CD4, CD8, and CD14 subpopulations was isolated, sonicated, and immunoprecipitated for analysis of methylation. All products were hybridized to a custom-tiled four-plex array containing 27,728 CpG islands annotated by UCSC and 22,532 well-characterized RefSeq promoter regions. Furthermore, bisulfite sequencing was then used for validation on a subsequent group of independent samples from PBC patients and controls. Thence, expression levels of selected X-linked genes were evaluated by quantitative real-time PCR with cDNA samples from all subjects. Results: We report herein that a total of 20, 15, and 19 distinct gene promoters reflected a significant difference in DNA methylation in CD4+ T, CD8+ T, and CD14+ cells in patients with PBC.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • The Clinical and Mutational Spectrum of B3GAT3 Linkeropathy
    Colman et al. Orphanet Journal of Rare Diseases (2019) 14:138 https://doi.org/10.1186/s13023-019-1110-9 RESEARCH Open Access The clinical and mutational spectrum of B3GAT3 linkeropathy: two case reports and literature review Marlies Colman1, Tim Van Damme1, Elisabeth Steichen-Gersdorf2, Franco Laccone3, Sheela Nampoothiri4, Delfien Syx1, Brecht Guillemyn1, Sofie Symoens1 and Fransiska Malfait1* Abstract Background: Proteoglycans are large and structurally complex macromolecules which can be found in abundancy in the extracellular matrix and on the surface of all animal cells. Mutations in the genes encoding the enzymes responsible for the formation of the tetrasaccharide linker region between the proteoglycan core protein and the glycosaminoglycan side chains lead to a spectrum of severe and overlapping autosomal recessive connective tissue disorders, collectively coined the ‘glycosaminoglycan linkeropathies’. Results: We report the clinical findings of two novel patients with a complex linkeropathy due to biallelic mutations in B3GAT3, the gene that encodes glucuronosyltransferase I, which catalyzes the addition of the ultimate saccharide to the linker region. We identified a previously reported c.667G > A missense mutation and an unreported homozygous c.416C > T missense mutation. We also performed a genotype and phenotype-oriented literature overview of all hitherto reported patients harbouring B3GAT3 mutations. A total of 23 patients from 10 families harbouring bi-allelic mutations and one patient with a heterozygeous splice-site mutation in B3GAT3 have been reported. They all display a complex phenotype characterized by consistent presence of skeletal dysplasia (including short stature, kyphosis, scoliosis and deformity of the long bones), facial dysmorphology, and spatulate distal phalanges.
    [Show full text]
  • Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion Vy M
    Published OnlineFirst August 4, 2017; DOI: 10.1158/1541-7786.MCR-17-0352 Signal Transduction Molecular Cancer Research Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion Vy M. Tran1, Anna Wade1, Andrew McKinney1, Katharine Chen1, Olle R. Lindberg1, Jane R. Engler1, Anders I. Persson1,2,3, and Joanna J. Phillips1,2,4 Abstract Glioblastoma (GBM) is the most common primary malignant heterogeneous HS content and structure across patient-derived brain tumor of adults and confers a poor prognosis due, in part, to tumorsphere lines suggested diverse functions in the GBM tumor diffuse invasion of tumor cells. Heparan sulfate (HS) glycosami- microenvironment. In GBM5 and mPN, elevated expression of noglycans, present on the cell surface and in the extracellular sulfatase 2 (SULF2), an extracellular enzyme that alters ligand matrix, regulate cell signaling pathways and cell–microenviron- binding to HS, was associated with low trisulfated HS disacchar- ment interactions. In GBM, the expression of HS glycosamino- ides, a substrate of SULF2. In contrast, other primary tumorsphere glycans and the enzymes that regulate their function are altered, lines had elevated expression of the HS-modifying enzyme hepar- but the actual HS content and structure are unknown. However, anase (HPSE). Using gene editing strategies to inhibit HPSE, a role inhibition of HS glycosaminoglycan function is emerging as a for HPSE in promoting tumor cell adhesion and invasion was promising therapeutic strategy for some cancers. In this study, we identified. These studies characterize the heterogeneity in HS use liquid chromatography–mass spectrometry analysis to dem- glycosaminoglycan content and structure across GBM and reveal onstrate differences in HS disaccharide content and structure their role in tumor cell invasion.
    [Show full text]