Differential Regulation and Function of Fas Expression on Glial Cells Sung Joong Lee, Tong Zhou, Chulhee Choi, Zheng Wang and Etty N

Total Page:16

File Type:pdf, Size:1020Kb

Differential Regulation and Function of Fas Expression on Glial Cells Sung Joong Lee, Tong Zhou, Chulhee Choi, Zheng Wang and Etty N Differential Regulation and Function of Fas Expression on Glial Cells Sung Joong Lee, Tong Zhou, Chulhee Choi, Zheng Wang and Etty N. Benveniste This information is current as of September 28, 2021. J Immunol 2000; 164:1277-1285; ; doi: 10.4049/jimmunol.164.3.1277 http://www.jimmunol.org/content/164/3/1277 Downloaded from References This article cites 70 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/164/3/1277.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Differential Regulation and Function of Fas Expression on Glial Cells1 Sung Joong Lee,* Tong Zhou,† Chulhee Choi,* Zheng Wang,† and Etty N. Benveniste2* Fas/Apo-1 is a member of the TNF receptor superfamily that signals apoptotic cell death in susceptible target cells. Fas or Fas ligand (FasL)-deficient mice are relatively resistant to the induction of experimental allergic encephalomyelitis, implying the involvement of Fas/FasL in this disease process. We have examined the regulation and function of Fas expression in glial cells (astrocytes and microglia). Fas is constitutively expressed by primary murine microglia at a low level and significantly up- regulated by TNF-␣ or IFN-␥ stimulation. Primary astrocytes express high constitutive levels of Fas, which are not further affected by cytokine treatment. In microglia, Fas expression is regulated at the level of mRNA expression; TNF-␣ and IFN-␥ induced Fas mRNA by ϳ20-fold. STAT-1␣ and NF-␬B activation are involved in IFN-␥- or TNF-␣-mediated Fas up-regulation in microglia, ␤ respectively. The cytokine TGF- inhibits basal expression of Fas as well as cytokine-mediated Fas expression by microglia. Upon Downloaded from incubation of microglial cells with FasL-expressing cells, ϳ20% of cells underwent Fas-mediated cell death, which increased to ϳ60% when cells were pretreated with either TNF-␣ or IFN-␥. TGF-␤ treatment inhibited Fas-mediated cell death of TNF-␣-or IFN-␥-stimulated microglial cells. In contrast, astrocytes are resistant to Fas-mediated cell death, however, ligation of Fas induces expression of the chemokines macrophage inflammatory protein-1␤ (MIP-1␤), MIP-1␣, and MIP-2. These data demonstrate that Fas transmits different signals in the two glial cell populations: a cytotoxic signal in microglia and an inflammatory signal in the astrocyte. The Journal of Immunology, 2000, 164: 1277–1285. http://www.jimmunol.org/ as (CD95) is a type I transmembrane glycoprotein belong- phoadenopathy and autoimmunity reminiscent of systemic lu- ing to the TNF receptor superfamily (1). It is expressed on pus erythematosus (13). F activated T and B cells, thymocytes, malignant T and B In experimental allergic encephalomyelitis (EAE), an autoim- cells, and in a variety of tissues outside the immune system, in- mune inflammatory disease of the CNS, the involvement of Fas/ cluding liver and lung (2). Upon ligation with agonistic Ab or the FasL was clearly demonstrated by observations that lpr or gld mice 3 natural Fas ligand (FasL), Fas trimerizes and recruits a number of are relatively resistant to the clinical development of EAE (14, 15). proteins sharing a death domain that leads to the formation of a These data suggested that the Fas/FasL pathway plays a significant specific death-inducing signaling complex (DISC) at the intracel- role in the development of EAE, possibly by mediating apoptosis by guest on September 28, 2021 lular region of the Fas receptor (3). The recruitment of caspase-8 of potential target cells. However, in two separate studies, oligo- to DISC results in proteolytic activation of the enzyme, which, in dendrocytes, the myelin-producing cells in the CNS that are con- turn, activates a series of other caspase members (4). FasL is a type sidered a major target in the disease of EAE, were resistant to II transmembrane glycoprotein that induces apoptosis in target FasL-mediated apoptosis and did not undergo apoptosis during the cells in both the membrane-bound form and the soluble form pathogenesis of EAE (16, 17). To the contrary, infiltrating CD4ϩ (sFasL) (5, 6). In the immune system, cell death through the Fas/ T cells and parenchymal microglia were killed by apoptosis, sug- FasL system is involved in B and T cell homeostasis and is also gesting that the effector cells, rather than the target cells, are elim- critical for CTL-mediated cytotoxicity (7–10). Recently, it was inated by apoptosis in the EAE disease process (16). More re- reported that the Fas/FasL system is responsible for immune cently, the involvement of Fas/FasL in EAE progression has been down-regulation in previously known immune-privileged sites dissected using the adoptive transfer model of EAE (18, 19). Ac- such as cornea and testis (11, 12). Mouse strains carrying cording to these studies, Fas expressed in the recipient animal as mutations in the Fas (lpr) or FasL (gld) genes exhibit lym- well as FasL expressed on donor cells are both important for the development of EAE. These data suggest that Fas expression on Departments of *Cell Biology and †Medicine, University of Alabama at Birmingham, CNS-resident glial cells contributes to EAE induction. Birmingham, AL 35294 In an attempt to elucidate the involvement of Fas/FasL in EAE Received for publication May 3, 1999. Accepted for publication November 22, 1999. as well as MS pathogenesis, Fas expression and function on glial The costs of publication of this article were defrayed in part by the payment of page cells has been investigated in several in vitro studies. In a study charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. using human oligodendrocytes, Fas ligation with anti-Fas Ab in- 1 This work was supported in part by National Institutes of Health Grants MH55795, duced rapid lysis of oligodendrocytes, supporting the idea of Fas- NS36765, and NS29719 (to E.N.B.). We acknowledge the support of the University dependent oligodendrocyte elimination in MS (20). However, this of Alabama at Birmingham Flow Cytometry Core Facility (Grant AM20614). Fas-dependent cell lysis did not exhibit characteristics of typical 2 Address correspondence and reprint requests to Dr. Etty N. Benveniste, Department apoptosis. High constitutive expression of Fas on mouse astrocytes of Cell Biology, 350 MCLM, University of Alabama at Birmingham, Birmingham, AL 35294-0005. E-mail address: [email protected] has been reported as well, but astrocyte susceptibility to FasL- 3 Abbreviations used in this paper: FasL, Fas ligand; DISC, death-inducing signaling mediated apoptosis is still controversial (21, 22). In a study using complex; EAE, experimental allergic encephalomyelitis; MIP, macrophage inflam- astrocyte cultures from fetal CNS, although Fas was constitutively matory protein; MS, multiple sclerosis; MAPK, mitogen-activated protein kinase; RPA, RNase protection assay; ERK, extracellular signal-related kinase; MEK, MAP/ expressed on astrocytes, Fas ligation failed to induce astrocyte cell ERK kinase; FAP-1, Fas-associated phosphatase-1. death (23). In another report, Fas was constitutively expressed by Copyright © 2000 by The American Association of Immunologists 0022-1767/00/$02.00 1278 FAS EXPRESSION AND FUNCTION ON GLIAL CELLS human fetal astrocytes as well as adult astrocytes and was up- Analysis of Fas protein expression by immunofluorescence flow regulated by several proinflammatory cytokines such as IL-1, IL-6, cytometry ␥ ␣ IFN- , and TNF- (24). In addition, the fetal astrocytes underwent Primary astrocytes were plated at 5 ϫ 105 cells/well into six-well plates apoptosis when treated with agonistic anti-Fas Ab. It has been (Costar, Cambridge, MA) and treated with IFN-␥ or TNF-␣ in the absence suggested that the susceptibility of human astrocytes to Fas-me- or the presence of TGF-␤1 for various time periods. The cells were diated apoptosis is dependent on cell passage and other microen- trypsinized, washed with PBS, incubated with 20 ␮g/ml of PE-conjugated anti-Fas Ab (Jo2) for1hat4°C, washed, then fixed in a final volume of vironmental factors; only late passage astrocytes are sensitive to ␮ ␥ 100 l of 1% paraformaldehyde. The cells were then analyzed on the Fas-induced apoptosis and the presence of IFN- enhances apo- FACScan (Becton Dickinson, Mountain View, CA). Total fluorescence ptosis (25). Apoptosis in microglia has not been well studied com- intensity was calculated as the mean fluorescence intensity ϫ percentage of pared with that in astrocytes. In several studies using immunohis- positive cells. Negative controls were incubated with isotype-matched Ab. tochemistry in EAE brain, microglial cells were positively stained For the analysis of primary microglia or EOC13 cells, cells were treated as described above, then scraped to detach from the well and incubated with by the TUNEL assay more frequently than astrocytes (16). Re- 50 ␮l of 2.4G2 supernatant (which contains rat anti-mouse Fc␥R Ab) sup- cently, Fas-mediated apoptosis was reported in cultured microglia plemented with 10% normal mouse serum for 30 min at 4°C before addi- upon TNF-␣ or IFN-␥ stimulation (26). tion of PE-conjugated anti-Fas Ab.
Recommended publications
  • The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology
    Cell, Vol. 104, 487±501, February 23, 2001, Copyright 2001 by Cell Press The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology Richard M. Locksley,*²³k Nigel Killeen,²k The receptors and ligands in this superfamily have and Michael J. Lenardo§k unique structural attributes that couple them directly to *Department of Medicine signaling pathways for cell proliferation, survival, and ² Department of Microbiology and Immunology differentiation. Thus, they have assumed prominent ³ Howard Hughes Medical Institute roles in the generation of tissues and transient microen- University of California, San Francisco vironments. Most TNF/TNFR SFPs are expressed in the San Francisco, California 94143 immune system, where their rapid and potent signaling § Laboratory of Immunology capabilities are crucial in coordinating the proliferation National Institute of Allergy and Infectious Diseases and protective functions of pathogen-reactive cells. National Institutes of Health Here, we review the organization of the TNF/TNFR SF Bethesda, Maryland 20892 and how these proteins have been adapted for pro- cesses as seemingly disparate as host defense and or- ganogenesis. In interpreting this large and highly active Introduction area of research, we have focused on common themes that unite the actions of these genes in different tissues. Three decades ago, lymphotoxin (LT) and tumor necro- We also discuss the evolutionary success of this super- sis factor (TNF) were identified as products of lympho- familyÐsuccess that we infer from its expansion across cytes and macrophages that caused the lysis of certain the mammalian genome and from its many indispens- types of cells, especially tumor cells (Granger et al., able roles in mammalian biology.
    [Show full text]
  • Pro- and Anti-Apoptotic CD95 Signaling in T Cells Maren Paulsen* and Ottmar Janssen
    Paulsen and Janssen Cell Communication and Signaling 2011, 9:7 http://www.biosignaling.com/content/9/1/7 DEBATE Open Access Pro- and anti-apoptotic CD95 signaling in T cells Maren Paulsen* and Ottmar Janssen Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other “CD95-sensitive” cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose- dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.
    [Show full text]
  • A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-Cell Immunotherapy
    Published OnlineFirst December 17, 2020; DOI: 10.1158/2159-8290.CD-20-0756 RESEARCH BRIEF A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy Ranjan Upadhyay1,2,3, Jonathan A. Boiarsky1,2,3, Gvantsa Pantsulaia1,2,3, Judit Svensson-Arvelund1,2,3, Matthew J. Lin1,2,3, Aleksandra Wroblewska2,3,4, Sherry Bhalla3,4, Nathalie Scholler5, Adrian Bot5, John M. Rossi5, Norah Sadek1,2,3, Samir Parekh1,2,3, Alessandro Lagana4, Alessia Baccarini2,3,4, Miriam Merad2,3,6, Brian D. Brown2,3,4, and Joshua D. Brody1,2,3 ABSTRACT T cell–based therapies have induced cancer remissions, though most tumors ulti- mately progress, reflecting inherent or acquired resistance including antigen Bianca Dunn by Illustration escape. Better understanding of how T cells eliminate tumors will help decipher resistance mecha- nisms. We used a CRISPR/Cas9 screen and identified a necessary role for Fas–FasL in antigen-specific T-cell killing. We also found that Fas–FasL mediated off-target “bystander” killing of antigen-negative tumor cells. This localized bystander cytotoxicity enhanced clearance of antigen-heterogeneous tumors in vivo, a finding that has not been shown previously. Fas-mediated on-target and bystander killing was reproduced in chimeric antigen receptor (CAR-T) and bispecific antibody T-cell models and was augmented by inhibiting regulators of Fas signaling. Tumoral FAS expression alone predicted survival of CAR-T–treated patients in a large clinical trial (NCT02348216). These data suggest strate- gies to prevent immune escape by targeting both the antigen expression of most tumor cells and the geography of antigen-loss variants.
    [Show full text]
  • CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30 And
    Published OnlineFirst August 7, 2018; DOI: 10.1158/2326-6066.CIR-18-0065 Research Article Cancer Immunology Research CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30þ and CD30– Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions Lee K. Hong1, Yuhui Chen2, Christof C. Smith1, Stephanie A. Montgomery3, Benjamin G. Vincent2, Gianpietro Dotti1,2, and Barbara Savoldo2,4 Abstract Tumor antigen heterogeneity limits success of chimeric (NSG) mouse model of metastatic EC. We observed that CD30. þ antigen receptor (CAR) T-cell therapies. Embryonal carcino- CAR T cells, while targeting CD30 EC tumor cells through mas (EC) and mixed testicular germ cell tumors (TGCT) the CAR (i.e., antigen-dependent targeting), also eliminated – containing EC, which are the most aggressive TGCT subtypes, surrounding CD30 EC cells in an antigen-independent man- are useful for dissecting this issue as ECs express the CD30 ner, via a cell–cell contact-dependent Fas/FasL interaction. In – þ – antigen but also contain CD30 /dim cells. We found that CD30- addition, ectopic Fas (CD95) expression in CD30 Fas EC was redirected CAR T cells (CD30.CAR T cells) exhibit antitumor sufficient to improve CD30.CAR T-cell antitumor activity. activity in vitro against the human EC cell lines Tera-1, Tera-2, Overall, these data suggest that CD30.CAR T cells might be and NCCIT and putative EC stem cells identified by Hoechst useful as an immunotherapy for ECs. Additionally, Fas/FasL dye staining. Cytolytic activity of CD30.CAR T cells was com- interaction between tumor cells and CAR T cells can be plemented by their sustained proliferation and proinflamma- exploited to reduce tumor escape due to heterogeneous antigen tory cytokine production.
    [Show full text]
  • Targeting of the Tumor Necrosis Factor Receptor Superfamily for Cancer Immunotherapy
    Hindawi Publishing Corporation ISRN Oncology Volume 2013, Article ID 371854, 25 pages http://dx.doi.org/10.1155/2013/371854 Review Article Targeting of the Tumor Necrosis Factor Receptor Superfamily for Cancer Immunotherapy Edwin Bremer Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands Correspondence should be addressed to Edwin Bremer; [email protected] Received 10 April 2013; Accepted 11 May 2013 AcademicEditors:H.Al-Ali,J.Bentel,D.Canuti,L.Mutti,andR.V.Sionov Copyright © 2013 Edwin Bremer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy. 1. Introduction ligand/receptor interaction induces formation of a Death Inducing Signaling Complex (DISC) to the cytoplasmic DD The tumor necrosis factor (TNF) superfamily is comprised [3]. This DISC comprises the adaptor protein Fas-associated of 27 ligands that all share the hallmark extracellular TNF death domain (FADD) and an inactive proform of the homology domain (THD) [1].
    [Show full text]
  • Activation Cell Homeostasis in Chronic Immune Cutting Edge
    Cutting Edge: CD95 Maintains Effector T Cell Homeostasis in Chronic Immune Activation This information is current as Ramon Arens, Paul A. Baars, Margot Jak, Kiki Tesselaar, of September 24, 2021. Martin van der Valk, Marinus H. J. van Oers and René A. W. van Lier J Immunol 2005; 174:5915-5920; ; doi: 10.4049/jimmunol.174.10.5915 http://www.jimmunol.org/content/174/10/5915 Downloaded from References This article cites 30 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/174/10/5915.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: CD95 Maintains Effector T Cell Homeostasis in Chronic Immune Activation Ramon Arens,1*†‡ Paul A. Baars,* Margot Jak,* Kiki Tesselaar,* Martin van der Valk,§ Marinus H.
    [Show full text]
  • A Small Peptide Antagonist of the Fas Receptor Inhibits Neuroinflammation
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2019-09-30 A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma Anitha Krishnan Harvard Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Amino Acids, Peptides, and Proteins Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell Biology Commons, Eye Diseases Commons, Nervous System Commons, Neuroscience and Neurobiology Commons, and the Ophthalmology Commons Repository Citation Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A, Gregory-Ksander M. (2019). A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. Open Access Articles. https://doi.org/ 10.1186/s12974-019-1576-3. Retrieved from https://escholarship.umassmed.edu/oapubs/3987 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Krishnan et al. Journal of Neuroinflammation (2019) 16:184 https://doi.org/10.1186/s12974-019-1576-3 RESEARCH Open Access A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma Anitha Krishnan1, Andrew J.
    [Show full text]
  • Human T Cells − CD27 + CD45RA + Effector-Type CD8 Activation
    Cytolytic Mechanisms and Expression of Activation-Regulating Receptors on Effector-Type CD8+CD45RA+CD27− Human T Cells This information is current as of September 29, 2021. Paul A. Baars, Laura M. Ribeiro do Couto, Jeanette H. W. Leusen, Berend Hooibrink, Taco W. Kuijpers, Susanne M. A. Lens and René A. W. van Lier J Immunol 2000; 165:1910-1917; ; doi: 10.4049/jimmunol.165.4.1910 Downloaded from http://www.jimmunol.org/content/165/4/1910 References This article cites 45 articles, 19 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/165/4/1910.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Cytolytic Mechanisms and Expression of Activation-Regulating Receptors on Effector-Type CD8؉CD45RA؉CD27؊ Human T Cells Paul A. Baars,1* Laura M.
    [Show full text]
  • 8 Death Receptor Mutations
    Chapter 8 / Death Receptor Mutations 149 8 Death Receptor Mutations Sug Hyung Lee, MD, PhD, Nam Jin Yoo, MD, PhD, and Jung Young Lee, MD, PhD, SUMMARY It is generally believed that human cancers may arise as the result of an accumulation of mutations in genes and subsequent clonal selection of variant progeny with increas- ingly aggressive behaviors. Also, among the remarkable advances in our understanding in cancer biology is the realization that apoptosis has a profound effect on the malignant phenotypes. Along with these, compelling evidence indicates that somatic mutations in the genes encoding apoptosis-related proteins contribute to either development or pro- gression of human cancers. In this chapter, we present an overview of the death receptor pathway and its dysregulation in cancers. We then review the current knowledge of death receptor mutations that have been detected in humans. INTRODUCTION Programmed cell death through apoptosis plays a fundamental role in a variety of physiological processes, and its deregulation contributes to many diseases, including autoimmunity, cancer, acquisition of drug resistance in tumors, stroke, progression of some degenerative diseases, and acquired immunodeficiency syndrome (AIDS) (1–4). Apoptosis is an active cell-suicide process executed by a cascade of molecular events involving a number of membrane receptors and cytoplasmic proteins (1–4). Although many pathways for activating caspases may exist, only two, the intrinsic pathway and the extrinsic pathway, have been demonstrated in detail (3). The extrinsic pathway can be induced by members of the tumor necrosis factor (TNF) receptor family, such as TNF receptor 1 (TNFR1) and Fas (5–7).
    [Show full text]
  • Death Receptors Couple to Both Cell Proliferation and Apoptosis
    Death receptors couple to both cell proliferation and apoptosis Ralph C. Budd J Clin Invest. 2002;109(4):437-442. https://doi.org/10.1172/JCI15077. Perspective No one will dispute that death receptors do exactly what their name suggests, induce programmed cell death. In addition, however, several reports have recently suggested that these receptors, or their downstream regulators, may also function in certain aspects of cell growth or differentiation. These claims might be met with justifiable skepticism. Certainly there is nothing more opposite in cell fate than growth and death. Yet the signal pathways used by these two processes appear to commingle, and the eventual outcome of the signaling vector may be bent toward one result over the other by seemingly subtle balances among these components. Here, following a brief review of the traditional signal pathways that lead from death receptor activation to apoptosis, I scrutinize the various reports of increased growth or differentiation mediated by these same receptors. I then consider newly identified signal pathways linked to death receptors that might promote growth and, finally, speculate on whether these events represent merely interesting in vitro manipulations or actual physiologically important processes. Conventional death receptor signaling The classical view of death receptor function is typified by Fas (CD95/APO-1), a member of the TNF receptor (TNFR) family (1). Trimerization, or more likely oligomerization of Fas, leads to formation of the death-inducing signal complex (DISC), starting with recruitment of the Fas-adapter protein FADD through their mutual death domains […] Find the latest version: https://jci.me/15077/pdf PERSPECTIVE SERIES Lymphocyte signal transduction Gary Koretzky, Series Editor Death receptors couple to both cell proliferation and apoptosis Ralph C.
    [Show full text]
  • Distinct Effects of CD30 and Fas Signaling in Cutaneous Anaplastic Lymphomas: a Possible Mechanism for Disease Progression
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Distinct Effects of CD30 and Fas Signaling in Cutaneous Anaplastic Lymphomas: A Possible Mechanism for Disease Progression Edi Levi, Zhenxi Wang, Tina Petrogiannis-Haliotis, Walther M. Pfeifer, Werner Kempf, Reed Drews, and Marshall E. Kadin Departments of Pathology and Medicine, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, U.S.A. Lymphomatoid papulosis is part of a spectrum of agonistic antibody, HeFi-1. Proliferative responses, CD30+ cutaneous lymphoproliferative disorders char- mitogen-activated protein kinase, and nuclear factor acterized by spontaneous tumor regression. The kB activities were determined with and without CD30 mechanism(s) of regression is unknown. In a recent activation. Mac-1 and Mac-2 A showed increased pro- study, a selective increase in CD30 ligand expression in liferative responses to incubation with CD30 activating regressing lesions of lymphomatoid papulosis and antibody, HeFi-1. Inhibition of the mitogen-activated cutaneous CD30+ anaplastic large cell lymphoma was protein kinase activity caused growth inhibition of the shown, suggesting that activation of the CD30 signal- Mac-1, Mac-2 A, and JK cell lines. Activation of the ing pathway may be responsible for tumor regression, Fas pathway induced apoptosis in all three cell lines. whereas no difference in Fas/Fas ligand expression Taken together, these ®ndings suggest that resistance was found between regressing and nonregressing to CD30-mediated growth inhibition provides a lesions. Therefore we tested the effects of CD30 and possible mechanism for escape of cutaneous anaplastic Fas activation on three CD30+ cutaneous lymphoma large cell lymphoma from tumor regression.
    [Show full text]
  • Inhibition of Histone Deacetylase Activity Enhances Fas Receptor-Mediated Apoptosis in Leukemic Lymphoblasts
    Cell Death and Differentiation (2001) 8, 1014 ± 1021 ã 2001 Nature Publishing Group All rights reserved 1350-9047/01 $15.00 www.nature.com/cdd Inhibition of histone deacetylase activity enhances Fas receptor-mediated apoptosis in leukemic lymphoblasts ,1,2 1 1,4 3 D Bernhard* , S Skvortsov , I Tinhofer ,HHuÈbl , Introduction R Greil1,4, A Csordas3 and R Ko¯er1,2 In the past few years histone acetylation has been increasingly 1 Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria. recognized as being involved in the regulation of gene 2 Institute for General and Experimental Pathology, Division of Molecular transcription (reviewed in1,2). Furthermore, numerous studies Pathophysiology University of Innsbruck, A-6020 Innsbruck, Austria. have reported that inhibitors of histone deacetylases, such as 3 Institute of Medical Chemistry and Biochemistry, University of Innsbruck, the short-chain fatty acid (SCFA) butyrate, cause arrest of cell A-6020 Innsbruck, Austria. 4 division and induction of differentiation markers in animal Laboratory of Molecular Cytology, Division of Hematology and Oncology, 3±5 Department of Internal Medicine, University of Innsbruck, A-6020 Innsbruck, cells but induce programmed cell death in a cell-type Austria. specific manner, and even in the butyrate-sensitive cell types * Corresponding author: D Bernhard, Tyrolean Cancer Research Institute, follow different mechanisms of apoptosis. Butyrate-induced Innrain 66, A-6020 Innsbruck, Austria. Tel.: 0043-512-570485-15; apoptosis in certain colonocytes occurs via a Fas-dependent Fax: 0043-512-570485-44; E-mail: [email protected] pathway6 whereas butyrate-induced apoptosis of leukemic lymphoblasts does not.7 Moreover, butyrate resensitizes Fas- Received 13.3.01; revised 17.5.01; accepted 29.5.01 resistant colonocytes to this form of cell death.8,9 Edited by M Peter Although the underlying mechanisms have not yet been elucidated, these findings suggest that histone acetylation Abstract has an impact on sensitivity to Fas-induced apoptosis.
    [Show full text]