Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: a New Therapeutic Approach

Total Page:16

File Type:pdf, Size:1020Kb

Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: a New Therapeutic Approach Cancers 2015, 7, 1215-1232; doi:10.3390/cancers7030832 cancersOPEN ACCESS ISSN 2072-6694 www.mdpi.com/journal/cancers Review Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: a New Therapeutic Approach Miguel Muñoz 1;* and Rafael Coveñas 2 1 Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla, Spain 2 Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-955-012-965; Fax: +34-955-012-921. Academic Editor: Hildegard M. Schuller Received: 19 May 2015 / Accepted: 30 June 2015 / Published: 6 July 2015 Abstract: Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert An antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC. Cancers 2015, 7 1216 Keywords: substance P; NK-1 receptor antagonist; chronic pancreatitis; inflammation; smoking; alcoholism; depression 1. Introduction Pancreatic cancer (PC), one of the most ominous types of cancer, is the fourth leading cause of cancer related-deaths in both men and women, with less than 5% survival at 5 years after diagnosis. In 2013, the American Cancer Society estimated that there were 45,220 new cases of PC in the United States and 38,460 deaths from the disease. Treatment strategies have not succeeded in significantly extending patient survival, and clinical outcome has not improved substantially over the past 35 years; the overall 5-year survival rate remains dismal, around 5% [1]. Thus, PC continues to be a major unsolved health problem and conventional treatments unfortunately have little impact on the course of the disease. Almost all patients suffering from PC develop metastases, this being the main reason for its lethality [2]. Cytostatic drugs show a low safety profile and severe side effects (e.g., anaemia, leukopenia), because these drugs are not specific against cancer cells. Currently, due to having the worst prognosis, a lack of early diagnostic symptoms, and resistance to conventional chemo- and radiotherapies, PC remains a very complex malignancy. Thus, because there is still a lack of curative therapy there is An urgent need to prevent PC by applying new strategies and/or by improving current therapies [3]. Research into this issue should focus on drugs with fewer side effects than those produced by cytostatic drugs and this can only be achieved if the drug is specific against PC cells. In light of the above, a better understanding of both etiology and early developmental events in PC is vital. The evolution of advanced PC from initial pancreatic injury is a multi-factorial phenomenon involving a series of sequential events. The initial acute infection or tissue damage triggers inflammation, initiating the process of establishing a state of homeostasis in conjunction with innate immunity, aimed at limiting harm to the body. Upon recurrent pancreatic injuries, which may be due to genetic susceptibility, smoking and alcohol abuse, unhealthy diet, a pro-inflammatory milieu is induced; comprising several types of immune cells, growth factors, chemokines, cytokines and restructured extracellular matrix; this leads to prolonged inflammatory/chronic conditions [4]. Cells that have sustained DNA damage and/or mutagenic assault exploit the prolonged inflammatory response aiding in the initiation and development of neoplastic/fibrotic events. Many tumor-stromal interactions result in a chaotic environment, where loss of immune surveillance and repair response lead to PC [4]. Thus, the inflammatory process is crucial and a better understanding of the inflammatory markers defining this “injury-inflammation-cancer” pathway could aide in the identification of novel molecular targets for the treatment of PC. For example, during the inflammation process the substance P/neurokinin-1 receptor system is up-regulated and the neurokinin-1 receptor therefore is An important target for the treatment of inflammatory processes (Figure1)[5]. Cancers 2015, 7 1217 Cancers 2015, 7 3 FigureFigure 1. 1. RiskRisk factors factors (tobacco smoking,smoking, alcoholism,alcoholism, depression)depression) for for the the development development of of PC PCare are characterized characterized by An by up-regulation an up-regulation of the SP/NK-1 of the receptorSP/NK system.-1 receptor This up-regulationsystem. This is upalso-regulation present inis inflammationalso present andin inflammation in chronic pancreatitis. and in chroni Smokingc pancreatitis. and alcohol Smoking abuse induce and alcohola pro-inflammatory abuse induce milieu a pro and-inflammatory are risk factors milieu for chronic and pancreatitis;are risk factors depression for increaseschronic pancreatitis;the level of SP,depression and chronic increases pancreatitis the level promotes of SP, PC. and NK-1 chronic receptor pancreatitis antagonists promotes can prevent PC. NK(by-1 counteractingreceptor antagonists the risk factors/chroniccan prevent pancreatitis)(by counteracting and can th treate risk PC factors/chronic by blocking the pancreatitis)pathophysiological and can actionstreat PC exerted by blocking by SP the via pathophysiological the NK-1 receptor. actions exerted by SP via the NK-1 receptor. It is known that the risk factor of PC is 13.6% for tobacco smoking and 13.0% for heavy alcohol drinking,It is known and that that the the risk risk factor of PC of increases PC is 13.6% to 25.7% for tobacco when considering smoking and tobacco 13.0% smoking for heavy and alcohol alcohol drinking,together and [6]. that This the means risk of that PC An increases appreciable to 25.7% proportion when considering of the PC population tobacco smoking could be and avoided alcohol by togethermodifying [6]. lifestyle This means habits that such an as tobaccoappreciable smoking proportion and heavy of the alcohol PC population drinking. Smoking could be and avoided alcoholism by modifyingare well-established lifestyle habits risk factors such of as chronic tobacco pancreatitis smoking and and PC heavy [6] and alcohol chronic drinking. pancreatitis Smoking is a risk factorand alcoholismfor the development are well-established of PC [7] risk (Figure factors1). Moreover,of chronic itpancreatitis has been reportedand PC [ that6] and chronic chronic stress pancreatitis increases issusceptibility a risk factor forfor developingthe development pancreatitis of PC and [7] accelerates(Figure 1). PCMoreover growth, andit has invasion been reported [8,9]. that chronic stressPeptides increases are susceptibility widely involved for developi in humanng pathology pancreatitis (see and [5 ]accelerates for a review). PC growth As indicated and invasion above, [ one8,9] of. thesePeptides peptides are widely is the undecapeptide involved in human substance pathology P (SP). (see The [5 biological] for a review action). As of SPindicated is mainly above, mediated one of by thesethe tachykininpeptides is neurokinin-1 the undecapeptide receptor substance (NK-1 receptor), P (SP). The since biological SP shows action the highest of SP affinityis mainly for med theiated NK-1 byreceptor the tachykinin [10]. Many neurokinin data indicate-1 receptor that the (NK SP/NK-1-1 receptor), receptor since system SP shows is involved the highest in smoking, affinity alcoholism, for the NKdepression,-1 receptor chronic [10]. inflammationMany data indicate and cancer that progressionthe SP/NK-1 (Figure receptor1)[ 5system,11,12 ].is Thisinvolved is very in important,smoking, alcoholism,since it means depression that a therapeutic, chronic inflammation intervention with and NK-1cancer receptor progression antagonists (Figure by 1) targeting [5,11,12] NK-1. This receptors is very important,could improve since theit means above pathologiesthat a therapeutic (Figure i1ntervention). This strategy with opensNK-1 up receptor new approaches antagonists for by translational targeting NKresearch.-1 receptors In view could of this, improve the aim the of above this paper pathologies is to review (Figure the involvement 1). This strategy of the SP/NK-1opens up receptor new system in these pathologies and, in particular, in PC. Cancers 2015, 7 1218 2. Substance P and the
Recommended publications
  • Compositions for Treating Centrally Mediated
    (19) TZZ Z_T (11) EP 2 722 045 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/4178 (2006.01) A61K 31/473 (2006.01) 06.07.2016 Bulletin 2016/27 A61K 31/496 (2006.01) A61K 31/573 (2006.01) A61K 45/06 (2006.01) A61K 9/00 (2006.01) (2006.01) (2006.01) (21) Application number: 14151683.1 A61K 9/20 A61K 9/48 A61P 1/08 (2006.01) (22) Date of filing: 18.11.2010 (54) Compositions for treating centrally mediated nausea and vomiting Zusammensetzungen zur Behandlung von zentral vermitteltem Unwohlsein und Erbrechen Compositions pour traiter les nausées et vomissements à médiation centrale (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A1-2008/049552 WO-A2-2007/096763 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR • REDDY G KESAVA ET AL: "Novel neurokinin-1 antagonists as antiemetics for the treatment of (30) Priority: 18.11.2009 US 262470 P chemotherapy-induced emesis.", SUPPORTIVE 14.09.2010 US 382709 P CANCER THERAPY 1 APR 2006 LNKD- PUBMED:18632487, vol. 3, no. 3, 1 April 2006 (43) Date of publication of application: (2006-04-01), pages140-142, XP002626039, ISSN: 23.04.2014 Bulletin 2014/17 1543-2912 • DIEMUNSCH P ET AL: "Neurokinin-1 receptor (62) Document number(s) of the earlier application(s) in antagonists in the prevention of postoperative accordance with Art.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • The Significance of NK1 Receptor Ligands and Their Application In
    pharmaceutics Review The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy Agnieszka Majkowska-Pilip * , Paweł Krzysztof Halik and Ewa Gniazdowska Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-504-10-11 Received: 7 June 2019; Accepted: 16 August 2019; Published: 1 September 2019 Abstract: To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy. Keywords: neurokinin 1 receptor; Substance P; SP analogues; NK1R antagonists; targeted therapy; radioligands; tumour therapy; PET imaging 1. Introduction Neurokinin 1 receptor (NK1R), also known as tachykinin receptor 1 (TACR1), belongs to the tachykinin receptor subfamily of G protein-coupled receptors (GPCRs), also called seven-transmembrane domain receptors (Figure1)[ 1–3]. The human NK1 receptor structure [4] is available in Protein Data Bank (6E59).
    [Show full text]
  • WO 2019/023318 Al 31 January 2019 (31.01.2019) W!P O PCT
    because of a decrease in the number and/or dysfunction of post-synaptic nicotinic receptors or to a decrease in the amount of acetylcholine ("Ach") available at the neuromuscular junction due to gene mutations in the presynaptic proteins involved in the synthesis, storage and release of ACh, or to degeneration of cholinergic nerves that innervate muscles. An emerging myasthenic syndrome (with or without auto antibodies to nicotinic receptors) has been reported in association with immune- therapies used for the treatment of certain malignancies. Myasthenic syndromes are sometimes loosely referred to as MG in the medical literature but herein, all MG-like conditions which do not involve autoantibodies to nicotinic receptors will be referred to as myasthenic syndromes. MG itself is a myasthenic syndrome and is considered as such herein, although, as the most prominent myasthenic syndrome it is often mentioned specifically (as in the phrase "MG and other myasthenic syndromes"). " K 1-antagonist": an antagonist of the neurokinin receptor subtype- 1, in the literature also referred to as K 1 receptor antagonist or K 1 receptor inhibitor. "Effective daily dose of K 1-antagonist" this expression, as used herein, refers to a single dose of said K 1-antagonist that is at least as high as the dose preventing or treating nausea and vomiting in a mammalian subject. Said single dose is from 1 g to 600 mg, normally from O.Olmg/kg to 1.8mg/kg of body weight. Alternatively, "Effective daily dose of K 1-antagonist" refers to a daily dose of said K 1- antagonist that is at least as high as the dose preventing or treating nausea and vomiting in pediatric or adult human patients undergoing cancer chemotherapy, said effective daily dose being from 0.03mg/kg to 3.6 mg/kg of body weight.
    [Show full text]
  • Neurokinin Receptor NK Receptor
    Neurokinin Receptor NK receptor There are three main classes of neurokinin receptors: NK1R (the substance P preferring receptor), NK2R, and NK3R. These tachykinin receptors belong to the class I (rhodopsin-like) G-protein coupled receptor (GPCR) family. The various tachykinins have different binding affinities to the neurokinin receptors: NK1R, NK2R, and NK3R. These neurokinin receptors are in the superfamily of transmembrane G-protein coupled receptors (GPCR) and contain seven transmembrane loops. Neurokinin-1 receptor interacts with the Gαq-protein and induces activation of phospholipase C followed by production of inositol triphosphate (IP3) leading to elevation of intracellular calcium as a second messenger. Further, cyclic AMP (cAMP) is stimulated by NK1R coupled to the Gαs-protein. The neurokinin receptors are expressed on many cell types and tissues. www.MedChemExpress.com 1 Neurokinin Receptor Antagonists, Agonists, Inhibitors, Modulators & Activators Aprepitant Befetupitant (MK-0869; MK-869; L-754030) Cat. No.: HY-10052 (Ro67-5930) Cat. No.: HY-19670 Aprepitant (MK-0869) is a selective and Befetupitant is a high-affinity, nonpeptide, high-affinity neurokinin 1 receptor antagonist competitive tachykinin 1 receptor (NK1R) with a Kd of 86 pM. antagonist. Purity: 99.67% Purity: >98% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 5 mg, 10 mg, 50 mg, 100 mg, 200 mg Size: 1 mg, 5 mg Biotin-Substance P Casopitant mesylate Cat. No.: HY-P2546 (GW679769B) Cat. No.: HY-14405A Biotin-Substance P is the biotin tagged Substance Casopitant mesylate (GW679769B) is a potent, P. Substance P (Neurokinin P) is a neuropeptide, selective, brain permeable and orally active acting as a neurotransmitter and as a neurokinin 1 (NK1) receptor antagonist.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders
    (19) TZZ ¥__T (11) EP 2 998 314 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.03.2016 Bulletin 2016/12 C07K 7/08 (2006.01) A61K 38/10 (2006.01) A61K 47/48 (2006.01) A61P 1/00 (2006.01) (21) Application number: 15190713.6 (22) Date of filing: 04.06.2008 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • SHAILUBHAI, Kunwar HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Audubon, PA 19402 (US) RO SE SI SK TR • JACOB, Gary S. New York, NY 10028 (US) (30) Priority: 04.06.2007 US 933194 P (74) Representative: Cooley (UK) LLP (62) Document number(s) of the earlier application(s) in Dashwood accordance with Art. 76 EPC: 69 Old Broad Street 12162903.4 / 2 527 360 London EC2M 1QS (GB) 08770135.5 / 2 170 930 Remarks: (71) Applicant: Synergy Pharmaceuticals Inc. This application was filed on 21-10-2015 as a New York, NY 10170 (US) divisional application to the application mentioned under INID code 62. (54) AGONISTS OF GUANYLATE CYCLASE USEFUL FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS, INFLAMMATION, CANCER AND OTHER DISORDERS (57) The invention provides novel guanylate cycla- esterase. The gastrointestinal disorder may be classified se-C agonist peptides and their use in the treatment of as either irritable bowel syndrome, constipation, or ex- human diseases including gastrointestinal disorders, in- cessive acidity etc. The gastrointestinal disease may be flammation or cancer (e.g., a gastrointestinal cancer).
    [Show full text]
  • Review Article the Role of Neurokinin-1 Receptor in the Microenvironment of Inflammation and Cancer
    The Scientific World Journal Volume 2012, Article ID 381434, 21 pages The cientificWorldJOURNAL doi:10.1100/2012/381434 Review Article The Role of Neurokinin-1 Receptor in the Microenvironment of Inflammation and Cancer Marisa Rosso,1 Miguel Munoz,˜ 1 and Michael Berger2, 3 1 Research Laboratory on Neuropeptides, Hospital Infantil Universitario Virgen del Roc´ıo, Avenida Manuel Siurot s/n, 41013 Seville, Spain 2 Department of Pediatric Infectious Diseases and Immunology, Hospital Infantil Universitario Virgen del Roc´ıo, Avenida Manuel Siurot s/n, 41013 Seville, Spain 3 Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337 Munich, Germany Correspondence should be addressed to Marisa Rosso, [email protected] Received 29 October 2011; Accepted 20 November 2011 Academic Editors: D. A. Altomare and A. K. Kiemer Copyright © 2012 Marisa Rosso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The recent years have witnessed an exponential increase in cancer research, leading to a considerable investment in the field. However, with few exceptions, this effort has not yet translated into a better overall prognosis for patients with cancer, and the search for new drug targets continues. After binding to the specific neurokinin-1 (NK-1) receptor, the peptide substance P (SP), which is widely distributed in both the central and peripheral nervous systems, triggers a wide variety of functions. Antagonists against the NK-1 receptor are safe clinical drugs that are known to have anti-inflammatory, analgesic, anxiolytic, antidepressant, and antiemetic effects.
    [Show full text]
  • Supportive Care in Hemato-Oncology: a Review in Light of the Latest Guidelines Hemato-Onkolojide Destek Tedaviler: Son Kılavuzlar Işığında Gözden Geçirme
    Review DOI: 10.5505/tjh.2012.10327 Supportive Care in Hemato-Oncology: A Review in Light of the Latest Guidelines Hemato-Onkolojide Destek Tedaviler: Son Kılavuzlar Işığında Gözden Geçirme Eren Gündüz1, Zafer Gülbaş2 1Eskişehir Osmangazi University, School of Medicine, Department of Hematology, Eskişehir, Turkey 2Anadolu Health Center, Bone Marrow Transplantation Center, Kocaeli, Turkey This study received no financial support. The authors have no commercial, proprietary, or financial interest in any drug, device, or equipment mentioned herein. Abstract Recent developments in cancer therapy have resulted in increases in treatment success rates and survival. One of the basic goals of such therapy is improving patient quality of life. Chemotherapy protocols for solid or hematological malignancies-most of which include multiple agents-negatively impact patient quality of life. Additionally, there have been developments in supportive care, which seeks to ameliorate or minimize the negative effects of chemotherapy. Herein we present a review and brief summarization of some of the agents used for supportive care in cancer patients in light of the latest guidelines.. Key Words: Hematology, Supportive care, Nausea/vomiting, Anemia, Neutropenia Özet Son yıllarda kanser tedavisi alanında sağlanan gelişmeler hastaların tedavi şanslarının artması ve yaşam sürelerinde uzama ile sonuçlanmıştır. bu sıkıntılı tedavi sürecinde yaşam kalitesinin arttırılması temel hedeflerden biri olmalıdır. Solid ya da hematolojik maligniteler için verilen çoğu çoklu ajanlar içeren kemoterapi protokolleri hastaların yaşam kalitesini olumsuz etkiler. bu olumsuz etkilerden hastayı kurtarmak ya da en az hasar görmesi sağlamak amacıyla yapılan destek tedavilerde de gelişmeler vardır. bu derlemede, destek tedavi olarak verilen bu ajanlardan bazılarını en son kılavuzlar ışığında kısaca özetledik.
    [Show full text]
  • WO 2018/005695 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2018/005695 A l 0 4 January 2018 (04.01.2018) W ! P O PCT (51) International Patent Classification: (72) Inventors: BASTA, Steven; 590 Berkeley Avenue, Menlo A61K 31/4035 (2006.01) A61P 17/04 (2006.01) Park, CA 94025 (US). JOING, Mark; 936 Clara Drive, Pa A61K 45/06 (2006.01) lo Alto, CA 94303 (US). ZHANG, Xiaoming; 1089 Rem- sen Court, Sunnyvale, CA 94087 (US). KWON, Paul; 3349 (21) International Application Number: Deer Hollow Dr, Danville, CA 94506 (US). PCT/US20 17/039829 (74) Agent: SILVERMAN, Lisa, N.; Morrison & Foerster LLP, (22) International Filing Date: 755 Page Mill Road, Palo Alto, CA 94304-1018 (US). 28 June 2017 (28.06.2017) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/356,280 29 June 2016 (29.06.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/356,291 29 June 2016 (29.06.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 62/356,301 29 June 2016 (29.06.2016) us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/356,294 29 June 2016 (29.06.2016) us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 62/356,286 29 June 2016 (29.06.2016) us SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 62/356,271 29 June 2016 (29.06.2016) us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs
    Molecules 2016, 21, 75; doi:10.3390/molecules21010075 S1 of S110 Supplementary Materials: Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs Fei Mao 1, Wei Ni 1, Xiang Xu 1, Hui Wang 1, Jing Wang 1, Min Ji 1 and Jian Li * Table S1. Common names, indications, CAS Registry Numbers and molecular formulas of 6891 approved drugs. Common Name Indication CAS Number Oral Molecular Formula Abacavir Antiviral 136470-78-5 Y C14H18N6O Abafungin Antifungal 129639-79-8 C21H22N4OS Abamectin Component B1a Anthelminithic 65195-55-3 C48H72O14 Abamectin Component B1b Anthelminithic 65195-56-4 C47H70O14 Abanoquil Adrenergic 90402-40-7 C22H25N3O4 Abaperidone Antipsychotic 183849-43-6 C25H25FN2O5 Abecarnil Anxiolytic 111841-85-1 Y C24H24N2O4 Abiraterone Antineoplastic 154229-19-3 Y C24H31NO Abitesartan Antihypertensive 137882-98-5 C26H31N5O3 Ablukast Bronchodilator 96566-25-5 C28H34O8 Abunidazole Antifungal 91017-58-2 C15H19N3O4 Acadesine Cardiotonic 2627-69-2 Y C9H14N4O5 Acamprosate Alcohol Deterrant 77337-76-9 Y C5H11NO4S Acaprazine Nootropic 55485-20-6 Y C15H21Cl2N3O Acarbose Antidiabetic 56180-94-0 Y C25H43NO18 Acebrochol Steroid 514-50-1 C29H48Br2O2 Acebutolol Antihypertensive 37517-30-9 Y C18H28N2O4 Acecainide Antiarrhythmic 32795-44-1 Y C15H23N3O2 Acecarbromal Sedative 77-66-7 Y C9H15BrN2O3 Aceclidine Cholinergic 827-61-2 C9H15NO2 Aceclofenac Antiinflammatory 89796-99-6 Y C16H13Cl2NO4 Acedapsone Antibiotic 77-46-3 C16H16N2O4S Acediasulfone Sodium Antibiotic 80-03-5 C14H14N2O4S Acedoben Nootropic 556-08-1 C9H9NO3 Acefluranol Steroid
    [Show full text]