Anacardiaceae Sumac Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malosma Laurina (Nutt.) Nutt. Ex Abrams
I. SPECIES Malosma laurina (Nutt.) Nutt. ex Abrams NRCS CODE: Family: Anacardiaceae MALA6 Subfamily: Anacardiodeae Order: Sapindales Subclass: Rosidae Class: Magnoliopsida Immature fruits are green to red in mid-summer. Plants tend to flower in May to June. A. Subspecific taxa none B. Synonyms Rhus laurina Nutt. (USDA PLANTS 2017) C. Common name laurel sumac (McMinn 1939, Calflora 2016) There is only one species of Malosma. Phylogenetic analyses based on molecular data and a combination of D. Taxonomic relationships molecular and structural data place Malosma as distinct but related to both Toxicodendron and Rhus (Miller et al. 2001, Yi et al. 2004, Andrés-Hernández et al. 2014). E. Related taxa in region Rhus ovata and Rhus integrifolia may be the closest relatives and laurel sumac co-occurs with both species. Very early, Malosma was separated out of the genus Rhus in part because it has smaller fruits and lacks the following traits possessed by all species of Rhus : red-glandular hairs on the fruits and axis of the inflorescence, hairs on sepal margins, and glands on the leaf blades (Barkley 1937, Andrés-Hernández et al. 2014). F. Taxonomic issues none G. Other The name Malosma refers to the strong odor of the plant (Miller & Wilken 2017). The odor of the crushed leaves has been described as apple-like, but some think the smell is more like bitter almonds (Allen & Roberts 2013). The leaves are similar to those of the laurel tree and many others in family Lauraceae, hence the specific epithet "laurina." Montgomery & Cheo (1971) found time to ignition for dried leaf blades of laurel sumac to be intermediate and similar to scrub oak, Prunus ilicifolia, and Rhamnus crocea; faster than Heteromeles arbutifolia, Arctostaphylos densiflora, and Rhus ovata; and slower than Salvia mellifera. -
Weed Risk Assessment for Pistacia Chinensis Bunge (Anacardiaceae)
Weed Risk Assessment for Pistacia United States chinensis Bunge (Anacardiaceae) – Department of Agriculture Chinese pistache Animal and Plant Health Inspection Service November 27, 2012 Version 1 Pistacia chinensis (source: D. Boufford, efloras.com) Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Pistacia chinensis Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. As part of this analysis, we use a stochastic simulation to evaluate how much the uncertainty associated with the analysis affects the model outcomes. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Vascular Plants of Williamson County Rhus Aromatica − SKUNKBRUSH, FRAGRANT SUMAC [Anacardiaceae]
Vascular Plants of Williamson County Rhus aromatica − SKUNKBRUSH, FRAGRANT SUMAC [Anacardiaceae] Rhus aromatica Aiton (includes varieties), SKUNKBRUSH, FRAGRANT SUMAC. Shrub, winter-deciduous, clump-forming, with long shoots and short lateral and spur shoots, 50– 200 cm tall; shoots short-tomentose, strongly aromatic like wintergreen (Gaultheria) when cut or crushed (having resin ducts with terpenes); bark tight, light gray, ± smooth. Stems: cylindric, when young typically < 4 mm diameter, limber, reddish, puberulent on young periderm, knobby at nodes from persistent, short-projecting bases of old petioles (1 mm); containing colorless resin from ducts in stem. Leaves: helically alternate, 3-foliolate, typically 30–50 mm long, petiolate with the 3 leaflets subsessile to sessile arising at same point, without stipules; petiole 5−15 mm long; blades of leaflets ovate to obovate or fan- shaped to rhombic, 5−28 × 5−26 mm, terminal leaflet > lateral leaflets, rounded or obtuse (lateral leaflets) to tapered (terminal leaflets) at base, shallowly to deeply 3-lobed and short-crenate, pinnately veined with principal veins slightly raised on lower surface. Inflorescence: panicle of racemes, on spur shoots clustered at tips of winter stems, panicle to 60 mm long, racemes to 10, 10−15 mm long, each raceme ± 20-flowered, flowers helically arranged and tightly clustered, buds formed in midsummer and flowering starting before leaves, bracteate, densely short-tomentose with brown hairs; peduncle to 5 mm long; bract subtending each branch deltate-broadly awl-shaped and cupped, 1−2 mm long, brownish red, stiff, short-tomentose especially below midpoint, persistent; axes stiff, short-hairy; bractlets subtending pedicel 2, partially hidden by and ⊥ to bract, ovate, 1 mm long, keeled, puberulent at base and on inner surface; pedicel 1−2 mm long increasing in fruit, greenish, sparsely hairy or glabrous. -
Family Scientific Name Life Form Anacardiaceae Spondias Tuberosa
Supplementary Materials: Figure S1 Performance of the gap-filling algorithm on the daily Gcc time-series of the woody cerrado site. The algorithm created, based on an Auto-regressive moving average model (ARMA) fitting over the Gcc time-series, consists of three steps: first, the optimal order of the ARMA model is chosen based on physical principles; secondly, data segments before and after a given gap are fitted using an ARMA model of the order selected in the first step; and next, the gap is interpolated using a weighted function of a forward and a backward prediction based on the models of the selected data segments. The second and third steps are repeated for each gap contained in the entire time series. Table S1 List of plant species identified in the field that appeared in the images retrieved from the digital camera at the caatinga site. Family Scientific name Life form Anacardiaceae Spondias tuberosa Arruda Shrub|Tree Anacardiaceae Myracrodruon urundeuva Allemão Tree Anacardiaceae Schinopsis brasiliensis Engl. Tree Apocynaceae Aspidosperma pyrifolium Mart. & Zucc. Tree Bignoniaceae Handroanthus spongiosus (Rizzini) S.Grose Tree Burseraceae Commiphora leptophloeos (Mart.) J.B.Gillett Shrub|Tree Cactaceae Pilosocereus Byles & Rowley NA Euphorbiaceae Sapium argutum (Müll.Arg.) Huber Shrub|Tree Euphorbiaceae Sapium glandulosum (L.) Morong Shrub|Tree Euphorbiaceae Cnidoscolus quercifolius Pohl Shrub|Tree Euphorbiaceae Manihot pseudoglaziovii Pax & K.Hoffm. NA Euphorbiaceae Croton conduplicatus Kunth Shrub|Sub-Shrub Fabaceae Mimosa tenuiflora (Willd.) Poir. Shrub|Tree|Sub-Shrub Fabaceae Poincianella microphylla (Mart. ex G.Don) L.P.Queiroz Shrub|Tree Fabaceae Senegalia piauhiensis (Benth.) Seigler & Ebinger Shrub|Tree Fabaceae Poincianella pyramidalis (Tul.) L.P.Queiroz NA Malvaceae Pseudobombax simplicifolium A.Robyns Tree Table S2 List of plant species identified in the field that appeared in the images taken at the cerrado shrubland. -
Schinus Terebinthifolius Anacardiaceae Raddi
Schinus terebinthifolius Raddi Anacardiaceae LOCAL NAMES English (Bahamian holly,Florida holly,christmasberry tree,broadleaf pepper tree,Brazilian pepper tree); French (poivrier du Bresil,faux poivrier); German (Brasilianischer Pfefferbaum); Spanish (pimienta de Brasil,copal) BOTANIC DESCRIPTION S. terebinthifolius is a small tree, 3-10 m tall (ocassionally up to 15 m) and 10-30 cm diameter (occasionally up to 60 cm). S. terebinthifolius may be multi-stemmed with arching, not drooping branches. Tree; taken at: Los Angeles County Arboretum - Arcadia, CA and The National Leaves pinnate, up to 40 cm long, with 2-8 pairs of elliptic to lanceolate Arboretum - Washington, DC (W. Mark and leaflets and an additional leaflet at the end. Leaflets glabrous, 1.5-7.5 cm J. Reimer) long and 7-32 mm wide, the terminal leaflet larger than lateral ones. Leaf margins entire to serrated and glabrous. Flowers white, in large, terminal panicles. Petals oblong to ovate, 1.2-2.5 mm long. Fruits globose, bright red drupes, 4-5 mm in diameter. This is a highly invasive species that has proved to be a serious weed in South Africa, Florida and Hawaii. It is also noted as invasive in other Bark; taken at: Los Angeles County Caribbean and Indian Ocean islands. Rapid growth rate, wide Arboretum - Arcadia, CA and The National environmental tolerance, prolific seed production, a high germination rate, Arboretum - Washington, DC (W. Mark and seedling tolerance of shade, attraction of biotic dispersal agents, possible J. Reimer) allelopathy and the ability to form dense thickets all contribute to this species' success in its exotic range. -
Spondias Mombin Anacardiaceae L
Spondias mombin L. Anacardiaceae LOCAL NAMES Creole (gwo momben,gran monben,monben,monben fran); Dutch (hoeboe); English (mombin plum,yellow mombin,hog plum,yellow spanish plum); French (grand mombin,gros mombin,mombin jaune,prunier mombin,mombin franc); Fula (chali,chaleh,tali); Indonesian (kedongdong cina,kedongdong cucuk,kedongdong sabrang); Mandinka (ninkongo,ninkon,ningo,nemkoo); Portuguese (cajá,cajarana,caja- mirim,pau da tapera,taperreba,acaiba); Spanish (jojobán,circuela,ciruela,ciruelo,ciurela amarilla,balá,hobo,jobito,jobo blanco,jobo colorado,jobo corronchoso,jobo de puerco,jobo vano,ubo,jobo Spondias mombin slash (Joris de Wolf, gusanero); Wolof (nimkom,nimkoum,ninkon,ninkong) Patrick Van Damme, Diego Van Meersschaut) BOTANIC DESCRIPTION Spondias mombin is a tree to 30 m high; bark greyish-brown, thick, rough, often deeply grooved, with blunt, spinelike projections; trunk with branches 2-10 m above ground level to form a spreading crown up to 15 m in diameter and forming an open or densely closed canopy, depending on the vigour of the individual; seedlings with deep taproot, probably persisting in mature tree, which also possesses a shallower root system near the surface. Leaves alternate, once pinnate with an odd terminal leaflet; stipules absent; rachis 30-70 cm long; leaflets 5-10 pairs, elliptic, 5-11 x 2-5 cm; Spondias mombin foliage (Joris de Wolf, Patrick Van Damme, Diego Van apex long acuminate, asymmetric, truncate or cuneate; margins entire, Meersschaut) glabrous or thinly puberulous. Inflorescence a branched, terminal panicle with male, female and hermaphrodite flowers; sepals 5, shortly deltoid, 0.5-1 cm long; petals 5, white or yellow, oblong, 3 mm long, valvate in bud, becoming reflexed; stamens 10, inserted beneath a fleshy disc; ovary superior, 1-2 mm long; styles 4, short, erect. -
Paper Version of Palos Verdes
Selected Plants Native to Palos Verdes Peninsula (C.M. Rodrigue, 07/26/11) http://www.csulb.edu/geography/PV/ Succulents (plants with fleshy, often liquid-saturated leaves and/or stems. These features can be found in a variety of life forms, including annual herbaceous plants, vines, shrubs, and trees, as well as cacti) Herbaceous plants (non-woody, though there may be a woody caudex or basal stem and root -- annual growth dies back each year, resprouting in perennial or biennial plants, or the plant dies and is replaced by a new generation each year in the case of annual plants) Extremely tiny plant. Stems only about 2-6 cm tall, occasionally as much as 10 cm, leaves only 1-3 mm long (can get up to 6 mm long), fleshy, found at the plant's base or on the stems, shape generally ovate (egg-shaped), may have a blunt rounded end or a fine acute tip. The leaves are arranged oppositely, not alternately. The plant is green when new but ages to red or pink. Tiny flower (0.5- 2 mm) borne in leaf axils, usually just one per leaf pair on a pedicel (floral stem) less than 6 mm long. Two or 3 petals and 3 or 4 sepals. Flowers February to May. Annual herb. Found in open areas, in rocky nooks and crannies, and sometimes in vernal ponds (temporary pools that form after a rain and then slowly evaporate). Crassula connata (Crassulaceae): pygmy stonecrop or pygmy-weed or sand pygmyweed Leaves converted into scales along stems, which are arranged alternately and overlap. -
Additional Details on Select Pollinator Plants Sugar Bush (Rhus Ovata
Additional Details on Select Pollinator Plants Sugar Bush (Rhus ovata) • Native to dry canyons/slopes of California • Flower colors are white and pink • Blooms during spring, winter • When established, needs only occasional watering and is easy to take care of • Prefers low moisture, is drought tolerant • Attracts butterflies and insects, bird friendly • Often used for firescaping (surrounding area with fire-resistant plants to create barrier) and slope stabilization (minimizing erosion) • Grows best in south facing chaparral slopes and hot/dry environments Pomegranate Trees • Pomegranate trees (Punica granatum) maximum height is 30 feet tall in ideal conditions, but commonly grow 12 to 16 feet tall as a round shrub or small tree. • The fruit is typically in season from September to February. • Prefer full sun exposure. • Once established, pomegranates can take considerable drought, but for good fruit production they must be irrigated Toyon Berry • Often grow to about 8 feet tall. • Its leaves are evergreen, alternate, sharply toothed, and are 5 cm in length and 2 cm wide. • The flowers are visited by butterflies and other insects, and have a mild, hawthorn-like scent. • They like sun or part shade, though they tend to do better in part shade in the southern, drier part of their geographic range. Canyon Sunflower (Venegasia carpesioides) • A great choice for a dry shady part of the garden as it tolerates full shade or part shade/sun. • Its yellow flowers are nearly always blooming. • They are fairly drought tolerant and they require little or no care and it’s tolerant of a variety of different garden soils. -
1 Final Report Saratoga Horticultural Research Endowment 2013-2015
Final Report Saratoga Horticultural Research Endowment 2013-2015 Ornamental plant trials for the new California landscape: Evaluating industry introductions for sustainable characteristics on reduced water Principal Investigator: Karrie Reid, UCCE Environmental Horticulture Advisor, San Joaquin County 2101 E. Earhart Ave., Ste 200 Stockton, CA 95206-3949 (209) 953-6109 office (209) 953-6128 fax [email protected] Co-Investigators: David W. Fujino, Ph.D., Director, California Center for Urban Horticulture, UC Davis Lorence (Loren) R. Oki, Ph.D., CE Specialist, Dept. of Plant Sciences, UC Davis Jared Sisneroz, Staff Research Associate, Dept. of Plant Sciences, UC Davis Executive Summary In these trials 16 perennial landscape plant species, (9 new cultivars and 7 underutilized species/cultivars), were evaluated for overall performance on a range of reduced irrigation levels in clay loam soil in the hot interior Central Valley of California. All plants were grown in- ground for 2 years; 12 of the species in full sun and 4 under 50% shade. Planting in October 2013 was followed by an establishment period of irrigation at 80%-100% of reference evapotranspiration (ET0) and 25% management allowable depletion through April 2015. Plants were then subjected to 1 of 4 different levels of reduced irrigation at 20%, 40%, 60%, or 80% of ET0 during the dry season through the first week of October 2015. During the deficit irrigation season they were evaluated across treatments for growth, health and vigor, overall appearance, flowering, pest tolerance, and disease resistance. From these assessments, irrigation recommendations are made for their use in the landscape. Introduction Plant performance trials are a critical step in the introduction and promotion of new or unfamiliar ornamental plants. -
Anacardiaceae)
73 Vol. 45, N. 1 : pp. 73 - 79, March, 2002 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Ontogeny and Structure of the Pericarp of Schinus terebinthifolius Raddi (Anacardiaceae) Sandra Maria Carmello-Guerreiro1∗ and Adelita A. Sartori Paoli2 1Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, CEP: 13083-970, Campinas, SP, Brasil; 2Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Caixa Postal 199, CEP: 13506-900, Rio Claro - SP, Brasil ABSTRACT The fruit of Schinus terebinthifolius Raddi is a globose red drupe with friable exocarp when ripe and composed of two lignified layers: the epidermis and hypodermis. The mesocarp is parenchymatous with large secretory ducts associated with vascular bundles. In the mesocarp two regions are observed: an outer region composed of only parenchymatous cells and an inner region, bounded by one or more layers of druse-like crystals of calcium oxalate, composed of parenchymatous cells, secretory ducts and vascular bundles. The mesocarp detaches itself from the exocarp due to degeneration of the cellular layers in contact with the hypodermis. The lignified endocarp is composed of four layers: the outermost layer of polyhedral cells with prismatic crystals of calcium oxalate, and the three innermost layers of sclereids in palisade. Ke y words: Anacardiaceae; Schinus terebinthifolius; pericarp; anatomy; pericarpo; anatomia INTRODUCTION significance particularly at a generic level. However, further ontogenic studies of the Schinus terebinthifolius Raddi, also known as the Anacardiaceae family are necessary to compare Brazilian Pepper Tree, belongs to the tribe the homologous structures in the various taxa (Von Rhoideae (Rhoeae) of the Anacardiaceae family. -
Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.