information Article Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach Ahmad Hassanat 1,2,*,†,‡ , Khalid Almohammadi 1, Esra’a Alkafaween 2,‡ , Eman Abunawas 2, Awni Hammouri 2 and V. B. Surya Prasath 3,4,5,6 1 Computer Science Department, Community College, University of Tabuk, Tabuk 71491, Saudi Arabia;
[email protected] 2 Computer Science Department, Mutah University, Karak 61711, Jordan;
[email protected] (E.A.);
[email protected] (E.A.);
[email protected] (A.H.) 3 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, OH 45229, USA;
[email protected] 4 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA 5 Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH 45267, USA 6 Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45221, USA * Correspondence:
[email protected] † Current address: Computer Department, Community College, University of Tabuk, Tabuk 71491, Saudi Arabia. ‡ These authors contributed equally to this work. Received: 6 November 2019; Accepted: 2 December 2019; Published: 10 December 2019 Abstract: Genetic algorithm (GA) is an artificial intelligence search method that uses the process of evolution and natural selection theory and is under the umbrella of evolutionary computing algorithm. It is an efficient tool for solving optimization problems. Integration among (GA) parameters is vital for successful (GA) search. Such parameters include mutation and crossover rates in addition to population that are important issues in (GA). However, each operator of GA has a special and different influence. The impact of these factors is influenced by their probabilities; it is difficult to predefine specific ratios for each parameter, particularly, mutation and crossover operators.