Download This Article (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
Pre-Supernova Evolution of Massive Stars
Pre-Supernova Evolution of Massive Stars ByNINO PANAGIA1;2, AND GIUSEPPE BONO3 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA. 2On assignment from the Space Science Department of ESA. 3Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone, Italy. We present the preliminary results of a detailed theoretical investigation on the hydrodynamical properties of Red Supergiant (RSG) stars at solar chemical composition and for stellar masses ranging from 10 to 20 M . We find that the main parameter governing their hydrodynamical behaviour is the effective temperature, and indeed when moving from higher to lower effective temperatures the models show an increase in the dynamical perturbations. Also, we find that RSGs are pulsationally unstable for a substantial portion of their lifetimes. These dynamical instabilities play a key role in driving mass loss, thus inducing high mass loss rates (up to −3 −1 almost 10 M yr ) and considerable variations of the mass loss activity over timescales of the order of 104 years. Our results are able to account for the variable mmass loss rates as implied by radio observations of type II supernovae, and we anticipate that comparisons of model predictions with observed circumstellar phenomena around SNII will provide valuable diagnostics about their progenitors and their evolutionary histories. 1. Introduction More than 20 years of radio observations of supernovae (SNe) have provided a wealth of evidence for the presence of substantial amounts of circumstellar material (CSM) surrounding the progenitors of SNe of type II and Ib/c (see Weiler et al., this Conference, and references therein). -
The Effect of Rotation on Stellar Structure and Evolution
Clemson University TigerPrints All Theses Theses May 2020 The Effect of Rotation on Stellar Structure and Evolution Jaad Antoun Tannous Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Tannous, Jaad Antoun, "The Effect of Rotation on Stellar Structure and Evolution" (2020). All Theses. 3267. https://tigerprints.clemson.edu/all_theses/3267 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. The Effect of Rotation on Stellar Structure and Evolution A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Physics by Jaad A. Tannous May 2020 Accepted by: Prof. Bradley S. Meyer, Committee Chair Prof. Mounib El Eid Prof. Dieter Hartmann Prof. Stephen Kaeppler Abstract In this thesis, we investigate the effects of rotation on the evolution of stars in the mass range of 2-15 M assuming solar-like initial composition. We have used a well tested hydrodynamical stellar evolution program [El Eid et al., 2009], which has been extended to include a one-dimensional treatment of rotational instabilities. The calculations for stars in the mass range up to 8 M have been per- formed to include the Asymptotic Giant Branch (AGB) in order to figure out whether rotational instabilities can effect the so called "third dredge up", leading to a neutron source for the s-process nucleosynthesis. -
A Refined Search for Pulsations in White Dwarf Companions To
MNRAS 479, 1267–1272 (2018) doi:10.1093/mnras/sty1546 Advance Access publication 2018 June 12 A refined search for pulsations in white dwarf companions to millisecond pulsars Mukremin Kilic,1,2† J. J. Hermes,3‡ A. H. Corsico,´ 4 Alekzander Kosakowski,1 Warren R. Brown,5 John Antoniadis,6 Leila M. Calcaferro,4 A. Gianninas,1 Leandro G. Althaus4 and M. J. Green7 1Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA 2Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 3Department of Physics and Astronomy, University of North Carolina, Chapel Hill NC 27599, USA 4Facultad de Ciencias Astronomicas´ y Geof´ısicas (UNLP), La Plata, Argentina 5Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge MA 02138, USA 6Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto M5S 3H4, Canada 7Astronomy and Astrophysics Group, Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK Accepted 2018 June 7. Received 2018 May 27; in original form 2018 April 11 ABSTRACT We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is underconstrained, but the mode periods we observe are consistent with expectations for an M = 0.16 − 0.19 M white dwarf, as suggested from spectroscopy. -
Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
Blue Loops of Intermediate Mass Stars
A&A 418, 213–224 (2004) Astronomy DOI: 10.1051/0004-6361:20040024 & c ESO 2004 Astrophysics Blue loops of intermediate mass stars I. CNO cycles and blue loops H. Y. Xu1 and Y. Li1,2 1 National Astronomical Observatories/Yunnan Observatory, PO Box 110, 650011 Kunming, PR China 2 Joint Laboratory for Optical Astronomy, Chinese Academy of Sciences, PR China Received 12 May 2003 / Accepted 19 December 2003 Abstract. We investigate the effects of the CNO cycles on the formation of the blue loop for intermediate mass stars of solar- like metallicity. By use of two ways to treat the CNO cycles, we find that the models adopting the CNO bi-cycles (CNO models) develop extensive blue loops while those only considering the CN cycle (CN models) do not. We compare the properties of the CN and CNO models to explore the triggering mechanism of the blue loop. We notice that during the blue loop the increase of luminosity is determined by the nuclear energy production in the stellar core while the increase of effective temperature measures how far the stellar envelope can expand for a given luminosity at its base. We find that the stellar envelope obeys the virial theorem to a very high accuracy. Thus in a convection-dominated envelope, the extra heat from its base will lead to more developed convective motion and the decrease of temperature, and the star evolves up along the RGB. However in a radiation- dominated envelope, the increase of luminosity requires the increase of temperature to enlarge the radiation transfer efficiency, and the star develops a blue loop. -
Pulsating Variable Stars and the Hertzsprung-Russell Diagram
- !% ! $1!%" % Studying intrinsically pulsating variable stars plays a very important role in stellar evolution under- standing. The Hertzsprung-Russell diagram is a powerful tool to track which stage of stellar life is represented by a particular type of variable stars. Let's see what major pulsating variable star types are and learn about their place on the H-R diagram. This approach is very useful, as it also allows to make a decision about a variability type of a star for which the properties are known partially. The Hertzsprung-Russell diagram shows a group of stars in different stages of their evolution. It is a plot showing a relationship between luminosity (or abso- lute magnitude) and stars' surface temperature (or spectral type). The bottom scale is ranging from high-temperature blue-white stars (left side of the diagram) to low-temperature red stars (right side). The position of a star on the diagram provides information about its present stage and its mass. Stars that burn hydrogen into helium lie on the diagonal branch, the so-called main sequence. In this article intrinsically pulsating variables are covered, showing their place on the H-R diagram. Pulsating variable stars form a broad and diverse class of objects showing the changes in brightness over a wide range of periods and magnitudes. Pulsations are generally split into two types: radial and non-radial. Radial pulsations mean the entire star expands and shrinks as a whole, while non- radial ones correspond to expanding of one part of a star and shrinking the other. Since the H-R diagram represents the color-luminosity relation, it is fairly easy to identify not only the effective temperature Intrinsic variable types on the Hertzsprung–Russell and absolute magnitude of stars, but the evolutionary diagram. -
Variable Star
Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught. -
Variable Stars Across the Observational HR Diagram
Variable stars across the observational HR diagram Laurent Eyer1, Nami Mowlavi1;2 1 Observatoire de Gen`eve, Universit´ede Gen`eve, 1290 Sauverny, Switzerland 2 ISDC, Universit´ede Gen`eve, 1290 Versoix, Switzerland E-mail: [email protected] Abstract. An overview of pulsating variable stars across the observational Hertzprung-Russel (HR) diagram is presented, together with a summary of their global properties. The HR diagram is presented with a third colour-coded dimension, visualizing the fraction of variable, the amplitude of variability or the period of variability. The distribution of variable stars in the other observational diagrams, such as the Period-Amplitude diagram, is also presented. Some of the progresses performed in the field of variable stars during the last decade are briefly summarized, and future projects that will improve our knowledge of variable stars are mentioned. 1. Introduction There are in the literature several global descriptions of variable stars. We can mention four books, one by Richter, Wenzel and Hoffmeister (1985, out of print), one by Sterken and Jaschek [1], one by Percy ([2]) and one, soon to come, by Aerts et al. [3]. There have also been two excellent and detailed reviews by Gautschy and Saio ([4], [5]) about a decade ago. With the advent of Charge-Coupled Devices (CCDs) and large scale surveys like the Optical Gravitational Lensing Experiment (OGLE), the Massive Compact Halo Object project (MACHO) or the "Exp´eriencepour la Recherche d'Objets Sombres" (EROS), the subject of variable star studies is now under a remarkable expansion. As we will see the expansion will continue in the coming decade because there are many future projects which will sample frequently large regions of the sky. -
Asteroseismology
Asteroseismology Gerald Handler Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland Email: [email protected] Abstract Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen. Introduction: variable and pulsating stars Nearly all the physical processes that determine the structure and evolution of stars occur in their (deep) interiors. The production of nuclear energy that powers stars takes place in their cores for most of their lifetime. The effects of the physical processes that modify the simplest models of stellar evolution, such as mixing and diffusion, also predominantly take place in the inside of stars. The light that we receive from the stars is the main information that astronomers can use to study the universe. However, the light of the stars is radiated away from their surfaces, carrying no memory of its origin in the deep interior. Therefore it would seem that there is no way that the analysis of starlight tells us about the physics going on in the unobservable stellar interiors. However, there are stars that reveal more about themselves than others. Variable stars are objects for which one can observe time-dependent light output, on a time scale shorter arXiv:1205.6407v1 [astro-ph.SR] 29 May 2012 than that of evolutionary changes. -