Arxiv:0801.1691V6 [Math.AG] 14 Dec 2015 Ihcmoetieoeain.Freape Ehave We Example, for Operations
THE BASIC GEOMETRY OF WITT VECTORS, I THE AFFINE CASE JAMES BORGER Abstract. We give a concrete description of the category of ´etale algebras over the ring of Witt vectors of a given finite length with entries in an arbitrary ring. We do this not only for the classical p-typical and big Witt vector functors but also for certain analogues over arbitrary local and global fields. The basic theory of these generalized Witt vectors is developed from the point of view of commuting Frobenius lifts and their universal properties, which is a new approach even for the classical Witt vectors. The larger purpose of this paper is to provide the affine foundations for the algebraic geometry of generalized Witt schemes and arithmetic jet spaces. So the basics here are developed somewhat fully, with an eye toward future applications. Introduction Witt vector functors are certain functors from the category of (commutative) rings to itself. The most common are the p-typical Witt vector functors W , for each prime number p. Given a ring A, one traditionally defines W (A) as a set to be AN and then gives it the unique ring structure which is functorial in A and such that the set maps w N W (A) −→ A p p2 p 2 (x0, x1,...) 7→ hx0, x0 + px1, x0 + px1 + p x2,...i are ring homomorphisms for all rings A, where the target has the ring structure with componentwise operations. For example, we have p−1 1 p (x , x ,...) + (y ,y ,...) = (x + y , x + y − xi yp−i,...) 0 1 0 1 0 0 1 1 pi 0 0 Xi=1 p p (x0, x1,...) · (y0,y1,...) = (x0y0, x0y1 + x1y0 + px1y1,...).
[Show full text]