MATH 163 — R E V I E W E X a M 3 TOPICS COVERED (§12.2– §12.11) 1. Series ∑ an Know the Difference Between a Sequenc

Total Page:16

File Type:pdf, Size:1020Kb

MATH 163 — R E V I E W E X a M 3 TOPICS COVERED (§12.2– §12.11) 1. Series ∑ an Know the Difference Between a Sequenc MATH163—REVIEW EXAM 3 TOPICS COVERED ( 12.2– 12.11) § § ∞ 1. Series an nP=n0 Know the difference between a sequence and a series. ◦ Know definition of partial sums, definition of value of infinite series. ◦ ∞ What does it mean to say that a series a converges? Give examples of how a series ◦ k=k0 k can fail to converge. Does the convergence/divergenceP of a series depend on k0? ∞ What is a necessary condition on the sequence of summands a for the series a to ◦ n n=0 n converge? P Know examples of series that converge and series that diverge (for example, Harmonic, Alter- ◦ nating Harmonic, Geometric, and p-series). Be able to evaluate converging ◦ - geometric series - telescoping series - other series that happen to be known Taylor series for functions such as f(x) = 1/(1 x), ex, cos(x), or sin(x) at particular values of x. − Understand the meaning of absolute convergence and conditional convergence. ◦ Be able to determine whether a series converges absolutely or diverges using one of the following ◦ tests: Divergence Test, Integral Test, Direct Comparison Test, Limit Comparison Test, Ratio Test. (The integral test is not emphasized in this exam.) Suggestions: Always apply Divergence test first. I try to do a limit comparison next. Only try for a direct comparison if it is obvious how to establish the inequality. If above fails, Ratio test is good for powers and factorials. If above fails, try Integral test if you recognize function you can integrate. Alternatively: if you recognize the series to be a known Taylor series evaluated in its interval ∞ n of convergence, you are done. For example, you know n=0 1/2 converges because it is the Taylor series for 1/(1 x) (otherwise known as geometricP series) at x = 1/2, which is in the − ∞ interval of convergence. Similarly, you know that ( 10)n/n! converges. Why? In these n=0 − cases you not only know convergence, but the valueP they converge to! Know how to test for conditional convergence of an alternating series that does not converge ◦ absolutely, using the Alternating series Test. Note: Always check for absolute convergence first. Be able to estimate series by partial sums using the alternating series estimation test. Do you ◦ know of any other methods to estimate series? ∞ 2. Power Series c (x a)n, power series representation of functions n − nP=0 Find radius and interval of convergence of a power series. ◦ ∞ f (n)(a) 3. Taylor Series (x a)n. (Memorize this formula!) n! − nX=0 Note: The Taylor series of a function f about a base point x = a is simply its power series ◦ ∞ representation c (x a)n. It is unique and the formula for c is known. n=0 n − n P Be able to find Taylor series for any function about a given base point x = a. ◦ Memorize the MacLaurin series for ex, cos x, sin x, 1/(1 x) and their intervals of convergence. ◦ − Be able to find MacLaurin series from the memorized series using substitution, addition, mul- ◦ tiplication, differentiation or integration, and find their intervals of convergence. (In many cases you have to use a combination of these methods! For example, you need subsitution, integration and again substitution to obtain series for ln(1+ x2) about x = 0) Be able to approximate a function by a Taylor polynomial and estimate the error made using ◦ - Taylor’s Inequality. - the Alternating Series Estimation test, in those cases when you know that the Taylor series converges to f and it happens to be alternating. Be able to approximate functions that arise in in physics and engineering, in which there is a ◦ small parameter denoted by a variable not necessarily called x! Linearization: Memorize the formula for the linear approximation of f about x = a! (Note: it ◦ simply consists of the first two terms of the Taylor series.) Use it to approximate functions and changes of function values. What is the difference between the linearization and the tangent line? PRACTICE PROBLEMS For each type of problem listed above, find a problem in the book or homework like it. Do as many as you need to be comfortable. A good set of sample problems is given below. 1. REVIEW Chapter 12 (pp 794-796), Concept Check: 1,3,4,5(a-f),6,7,8,9,10,11 2. REVIEW Chapter 12 (pp 794-796), True False: 1-13,17-20. 3. For each of the following an: (i) Determine whether the sequences a converges or diverges. If it converges, find the { n} limit. ∞ (ii) Determine whether the series n=1 an converges or diverges. P 1+ n3 9n+1 1 (a) a = (b) a = (c) a = n 1 + 2n3 n 10n n n (d) a = 2 + cos nπ (e) a = ln(n + 1) ln n n n − 4. Determine whether the following series converge absolutely, converge conditionally, or diverge. Make sure to clearly show all work. ∞ ∞ ∞ n sin n n2 + 1 (a) (b) (c) n3 + 1 1+ n2 n3 + 1 nX=1 nX=1 nX=1 ∞ ∞ ∞ ( 1)n ( 2)n ( 1)n ln n (d) − (e) − (f) − √n + 1 3n n nX=1 nX=2 nX=1 ∞ 1 (g) ( 1)n ln(2 + ) − n nX=1 5. Determine whether the following series converge or diverge. Evaluate those that converge. ∞ ∞ ∞ 22n+1 1 n 3 (a) (b) (c) ( 1)n+1 5n √ − 2n nX=1 nX=0 2 nX=2 ∞ ∞ ∞ ln n 2 1 n (d) (e) − (f) 1+ √n n(n + 1) n nX=1 nX=2 nX=1 ∞ ∞ ∞ 1 3n (g) ln (h) e−2n (i) ( 1)n n − n! nX=1 nX=0 nX=1 ∞ n! e2 e3 e4 (j) ( 1)n (k) 1 e + + . − 3n − 2! − 3! 4! − nX=1 6. REVIEW Chapter 12 (pp 794-796), # 33 7. REVIEW Chapter 12 (pp 794-796), # 35 8. REVIEW Chapter 12 (pp 794-796), # 38 9. REVIEW Chapter 12 (pp 794-796), # 45 ∞ xn 10. Let f(x) = . Find series representations for f ′, f ′′. Find the intervals of convergence n2 nX=1 of f, f ′, and f ′′. (Remember: the radius of convergence does not change under differentiation or integration! So, you only have to find it for one of these series. However, the interval of convergence can change.) 11. Determine the radius and the interval of convergence of the following power series. ∞ ∞ ∞ ( x)n 3n(x + 4)n (a) ( 1)n4nxn (b) − (c) − n + 1 √n nX=0 nX=0 nX=1 12. REVIEW, # 47-52 13. REVIEW, # 55 14. REVIEW, # 56 15. REVIEW, # 60 16. Several important functions that arise in the mathematical sciences are given in terms of power series. An example is the Bessel function of order 0, given by ∞ ( 1)nx2n J (x)= − 0 22n(n!)2 nX=0 Find the interval of convergence of J0. 17. p 770, # 35 (show given series solve diffeq, show= ex) 18. Show that π π3/3!+π5/5! π7/7!+. converges to zero. How many terms must be computed − − to get within 0.01 of zero? 19. (a) Write down the linear approximation of a function f(x) about a base point x = a. (b) Write down the linear approximation of the change ∆f of a function f(x) from a base point a to a point a +∆x. (c) Use linear approximations to estimate the amount of paint needed to apply a coat of paint 0.05cm thick to a hemispherical dome with diameter 50 m. 20. The edge x of a cube was measured to be 30 cm with a possible measurement error of at most 0.1 cm. That is, x = 30cm +∆x , where ∆x 0.1 | |≤ Approximate the maximum error ∆y in using this measurement to compute | | (a) the volume of the cube (b) the surface area of the cube 21. The dosage D of diphenhydramine for a dog of body mass w kg, is D = kw2/3 mg, where k is a constant. A cocker spaniel has mass w = 10 kg according to a veterinarians scale. Use linear approximations to estimate the maximum allowable eror in w if the percentage error in the dosage D must be less than 5%. 22. (a) Find the first three nonzero terms of the MacLaurin series for f(x)=(1+ x)k. (b) Find the linear approximation of f(x)=(1+ x)k. (c) Approximate √1+ x2 by a quadratic function if x is small..
Recommended publications
  • Riemann Sums Fundamental Theorem of Calculus Indefinite
    Riemann Sums Partition P = {x0, x1, . , xn} of an interval [a, b]. ck ∈ [xk−1, xk] Pn R(f, P, a, b) = k=1 f(ck)∆xk As the widths ∆xk of the subintervals approach 0, the Riemann Sums hopefully approach a limit, the integral of f from a to b, written R b a f(x) dx. Fundamental Theorem of Calculus Theorem 1 (FTC-Part I). If f is continuous on [a, b], then F (x) = R x 0 a f(t) dt is defined on [a, b] and F (x) = f(x). Theorem 2 (FTC-Part II). If f is continuous on [a, b] and F (x) = R R b b f(x) dx on [a, b], then a f(x) dx = F (x) a = F (b) − F (a). Indefinite Integrals Indefinite Integral: R f(x) dx = F (x) if and only if F 0(x) = f(x). In other words, the terms indefinite integral and antiderivative are synonymous. Every differentiation formula yields an integration formula. Substitution Rule For Indefinite Integrals: If u = g(x), then R f(g(x))g0(x) dx = R f(u) du. For Definite Integrals: R b 0 R g(b) If u = g(x), then a f(g(x))g (x) dx = g(a) f( u) du. Steps in Mechanically Applying the Substitution Rule Note: The variables do not have to be called x and u. (1) Choose a substitution u = g(x). du (2) Calculate = g0(x). dx du (3) Treat as if it were a fraction, a quotient of differentials, and dx du solve for dx, obtaining dx = .
    [Show full text]
  • The Radius of Convergence of the Lam\'{E} Function
    The radius of convergence of the Lame´ function Yoon-Seok Choun Department of Physics, Hanyang University, Seoul, 133-791, South Korea Abstract We consider the radius of convergence of a Lame´ function, and we show why Poincare-Perron´ theorem is not applicable to the Lame´ equation. Keywords: Lame´ equation; 3-term recursive relation; Poincare-Perron´ theorem 2000 MSC: 33E05, 33E10, 34A25, 34A30 1. Introduction A sphere is a geometric perfect shape, a collection of points that are all at the same distance from the center in the three-dimensional space. In contrast, the ellipsoid is an imperfect shape, and all of the plane sections are elliptical or circular surfaces. The set of points is no longer the same distance from the center of the ellipsoid. As we all know, the nature is nonlinear and geometrically imperfect. For simplicity, we usually linearize such systems to take a step toward the future with good numerical approximation. Indeed, many geometric spherical objects are not perfectly spherical in nature. The shape of those objects are better interpreted by the ellipsoid because they rotates themselves. For instance, ellipsoidal harmonics are shown in the calculation of gravitational potential [11]. But generally spherical harmonics are preferable to mathematically complex ellipsoid harmonics. Lame´ functions (ellipsoidal harmonic fuctions) [7] are applicable to diverse areas such as boundary value problems in ellipsoidal geometry, Schrodinger¨ equations for various periodic and anharmonic potentials, the theory of Bose-Einstein condensates, group theory to quantum mechanical bound states and band structures of the Lame´ Hamiltonian, etc. As we apply a power series into the Lame´ equation in the algebraic form or Weierstrass’s form, the 3-term recurrence relation starts to arise and currently, there are no general analytic solutions in closed forms for the 3-term recursive relation of a series solution because of their mathematical complexity [1, 5, 13].
    [Show full text]
  • Absolute and Conditional Convergence, and Talk a Little Bit About the Mathematical Constant E
    MATH 8, SECTION 1, WEEK 3 - RECITATION NOTES TA: PADRAIC BARTLETT Abstract. These are the notes from Friday, Oct. 15th's lecture. In this talk, we study absolute and conditional convergence, and talk a little bit about the mathematical constant e. 1. Random Question Question 1.1. Suppose that fnkg is the sequence consisting of all natural numbers that don't have a 9 anywhere in their digits. Does the corresponding series 1 X 1 nk k=1 converge? 2. Absolute and Conditional Convergence: Definitions and Theorems For review's sake, we repeat the definitions of absolute and conditional conver- gence here: P1 P1 Definition 2.1. A series n=1 an converges absolutely iff the series n=1 janj P1 converges; it converges conditionally iff the series n=1 an converges but the P1 series of absolute values n=1 janj diverges. P1 (−1)n+1 Example 2.2. The alternating harmonic series n=1 n converges condition- ally. This follows from our work in earlier classes, where we proved that the series itself converged (by looking at partial sums;) conversely, the absolute values of this series is just the harmonic series, which we know to diverge. As we saw in class last time, most of our theorems aren't set up to deal with series whose terms alternate in sign, or even that have terms that occasionally switch sign. As a result, we developed the following pair of theorems to help us manipulate series with positive and negative terms: 1 Theorem 2.3. (Alternating Series Test / Leibniz's Theorem) If fangn=0 is a se- quence of positive numbers that monotonically decreases to 0, the series 1 X n (−1) an n=1 converges.
    [Show full text]
  • Dirichlet’S Test
    4. CONDITIONALLY CONVERGENT SERIES 23 4. Conditionally convergent series Here basic tests capable of detecting conditional convergence are studied. 4.1. Dirichlet’s test. Theorem 4.1. (Dirichlet’s test) n Let a complex sequence {An}, An = k=1 ak, be bounded, and the real sequence {bn} is decreasing monotonically, b1 ≥ b2 ≥ b3 ≥··· , so that P limn→∞ bn = 0. Then the series anbn converges. A proof is based on the identity:P m m m m−1 anbn = (An − An−1)bn = Anbn − Anbn+1 n=k n=k n=k n=k−1 X X X X m−1 = An(bn − bn+1)+ Akbk − Am−1bm n=k X Since {An} is bounded, there is a number M such that |An|≤ M for all n. Therefore it follows from the above identity and non-negativity and monotonicity of bn that m m−1 anbn ≤ An(bn − bn+1) + |Akbk| + |Am−1bm| n=k n=k X X m−1 ≤ M (bn − bn+1)+ bk + bm n=k ! X ≤ 2Mbk By the hypothesis, bk → 0 as k → ∞. Therefore the right side of the above inequality can be made arbitrary small for all sufficiently large k and m ≥ k. By the Cauchy criterion the series in question converges. This completes the proof. Example. By the root test, the series ∞ zn n n=1 X converges absolutely in the disk |z| < 1 in the complex plane. Let us investigate the convergence on the boundary of the disk. Put z = eiθ 24 1. THE THEORY OF CONVERGENCE ikθ so that ak = e and bn = 1/n → 0 monotonically as n →∞.
    [Show full text]
  • Chapter 3: Infinite Series
    Chapter 3: Infinite series Introduction Definition: Let (an : n ∈ N) be a sequence. For each n ∈ N, we define the nth partial sum of (an : n ∈ N) to be: sn := a1 + a2 + . an. By the series generated by (an : n ∈ N) we mean the sequence (sn : n ∈ N) of partial sums of (an : n ∈ N) (ie: a series is a sequence). We say that the series (sn : n ∈ N) generated by a sequence (an : n ∈ N) is convergent if the sequence (sn : n ∈ N) of partial sums converges. If the series (sn : n ∈ N) is convergent then we call its limit the sum of the series and we write: P∞ lim sn = an. In detail: n→∞ n=1 s1 = a1 s2 = a1 + a + 2 = s1 + a2 s3 = a + 1 + a + 2 + a3 = s2 + a3 ... = ... sn = a + 1 + ... + an = sn−1 + an. Definition: A series that is not convergent is called divergent, ie: each series is ei- P∞ ther convergent or divergent. It has become traditional to use the notation n=1 an to represent both the series (sn : n ∈ N) generated by the sequence (an : n ∈ N) and the sum limn→∞ sn. However, this ambiguity in the notation should not lead to any confu- sion, provided that it is always made clear that the convergence of the series must be established. Important: Although traditionally series have been (and still are) represented by expres- P∞ sions such as n=1 an they are, technically, sequences of partial sums. So if somebody comes up to you in a supermarket and asks you what a series is - you answer “it is a P∞ sequence of partial sums” not “it is an expression of the form: n=1 an.” n−1 Example: (1) For 0 < r < ∞, we may define the sequence (an : n ∈ N) by, an := r for each n ∈ N.
    [Show full text]
  • Chapter 11 Outline Math 236 Summer 2002
    Chapter 11 Outline Math 236 Summer 2002 11.1 Infinite Series Sigma notation: Be able to go from a written-out sum to sigma notation and back. • Know how to change indicies and algebraically manipulate a sum in sigma notation. Infinite series as sequences of partial sums: What does it mean to say that an • infinite series converges? See Definition 11.1.1 which describes a series as the limit of its sequence of partial sums. Do not confuse the series with the corresponding sequence! Telescoping series: Sometimes the terms of a series can be rewritten using partial • fractions so that you can find a formula for the nth partial sum for the series. Then you can take the limit of this sequence of partial sums to get the sum of the series (if it exists). Be able to do this and be able to explain what you are doing (including notation) while you do it. Not all series are \telescoping" like this. The geometric series: What is the general form of a geometric series? When • does it converge, and to what? Notice that the formula for the sum of a convergent geometric series only works if you start from k = 0. Be able to prove (in a particular 1 case like x = 4 or in general) the formula for the sum of a convergent geometric series. The proof involves finding a formula for the nth partial sum of the series (start by computing sn xsn) and then taking the limit of that formula to get the sum of the series.
    [Show full text]
  • 2.53 Means the Reference Is to Be Found in Question 53 of Chapter 2
    Cambridge University Press 978-1-107-44453-9 - Numbers and Functions: Steps into Analysis: Third Edition R. P. Burn Index More information Index 2.53 means the reference is to be found in question 53 of chapter 2. 2.53− means that the reference is to be found before that question. 2.53+ means that the reference is to be found after that question. 2.53–58 refers to questions 53 to 58 of chapter 2. 2.53,64 refers to questions 53 and 64 of chapter 2. 2H means that the reference is to be found in the historical note to chapter 2. − Abel 5.91, 5H, 12.40 , 12H binomial theorem 1.5, 5.98, 112–113, 8H, absolute convergence 5.66–67, 77 11H, 12.45, 12H absolute value 2.52–64, 3.33, 54(vii) blancmange function 12.46 − accumulation point (cluster point) 4.48 Bolzano 2H, 4.53, 4H, 5H, 6.70, 6H, 7.12, alternating series test 5.62–63 7H, 12H + + + anti-derivative 10.52 , 54 Bolzano–Weierstrass theorem 4.46 , 53 + arc cosine 10.49–50 bound 3.48 , 3H − − Archimedean order 3.19 , 3.24, 3H, App. 1 lower: for sequence 3.5–7;forset4.53 , + Archimedes 1H, 2H, 3.25, 3H, 5H, 10H 7.8 − arc length 10.43–48 upper: for sequence 3.5–7;forset4.53 , + arc sine 8.44 7.8 arc tangent 1.8, 5.84, 8.45, 11.60–62 bounded sequence 3.5, 13–14, 62, 4.43–47, area 10.1–9 83–84, 5.25 under y = xk 10.3–5 convergent subsequence 3.80, 4.46–47, under y = x2 10.1 83–84 under y = x3 10.2 eventually 3.13, 62 under y = 1/x 10.8–9 monotonic 3.80, 4.33–35 arithmetic mean 2.30–39 Bouquet and Briot 5H Ascoli 4H Bourbaki 6H + associative law 5.1 , App.
    [Show full text]
  • 1 Convergence Tests
    Lecture 24Section 11.4 Absolute and Conditional Convergence; Alternating Series Jiwen He 1 Convergence Tests Basic Series that Converge or Diverge Basic Series that Converge X Geometric series: xk, if |x| < 1 X 1 p-series: , if p > 1 kp Basic Series that Diverge X Any series ak for which lim ak 6= 0 k→∞ X 1 p-series: , if p ≤ 1 kp Convergence Tests (1) Basic Test for Convergence P Keep in Mind that, if ak 9 0, then the series ak diverges; therefore there is no reason to apply any special convergence test. P k P k k Examples 1. x with |x| ≥ 1 (e.g, (−1) ) diverge since x 9 0. [1ex] k X k X 1 diverges since k → 1 6= 0. [1ex] 1 − diverges since k + 1 k+1 k 1 k −1 ak = 1 − k → e 6= 0. Convergence Tests (2) Comparison Tests Rational terms are most easily handled by basic comparison or limit comparison with p-series P 1/kp Basic Comparison Test 1 X 1 X 1 X k3 converges by comparison with converges 2k3 + 1 k3 k5 + 4k4 + 7 X 1 X 1 X 2 by comparison with converges by comparison with k2 k3 − k2 k3 X 1 X 1 X 1 diverges by comparison with diverges by 3k + 1 3(k + 1) ln(k + 6) X 1 comparison with k + 6 Limit Comparison Test X 1 X 1 X 3k2 + 2k + 1 converges by comparison with . diverges k3 − 1 √ k3 k3 + 1 X 3 X 5 k + 100 by comparison with √ √ converges by comparison with k 2k2 k − 9 k X 5 2k2 Convergence Tests (3) Root Test and Ratio Test The root test is used only if powers are involved.
    [Show full text]
  • When We Discuss Conditional Convergence, We Usually Note That
    When we discuss conditional convergence, we usually note that there is really only one way | namely, using the alternating series test | that you know of that can prove that a series converges when it does not converge absolutely. But not all signed series are strictly alternating! Here is a nice example which I claim converges conditionally, but not absolutely: X sin(n) n n=1 That's the sine of n radians there, meaning the terms in the series change sign often, but not by alternating strictly. Also the terms do not decrease monotonically in magnitude. The first few terms are approximately 0:84147 + 0:45464 + 0:04704 − 0:18920 − 0:19178 − 0:04656 + 0:09385 ::: Apart from the tests we discussed | the alternating series test and a few (e.g. integral test, comparison, ratio, etc.) which can only test positive series | the only hope you have of deciding convergence, in general, is to be able to find a supple formula for the partial sums. I will do that | sort of | in this example, showing a new idea. This \trick" is used pretty often, actually, as a way of speeding up convergence of a series, for those times when you have to know what a convergent series converges to. Let bn = sin(1) + sin(2) + ::: + sin(n), that is, the bn are partial sums for a different series (one without denominators). We're interested in these because of a little trick: with this definition of the bn we have b1 = sin(1) and for all other n > 1 we have sin(n) = bn − bn−1 = −bn−1 + bn We substitute this into our original series, hoping for a nice \formula" for the partial sums.
    [Show full text]
  • Math 1172 - Sequences and Series - Student Handout Modifications to Chapters 9 and 10
    Math 1172 - Sequences and Series - Student Handout Modifications to Chapters 9 and 10 Note: Due to the fact that Math 1172 does not cover certain topics in chapters 9 and 10, some of the exercise problems in the book will not be relevant. Some of the problems that you may skip are given below. If you are not sure about the relevance of a certain exercise, check with your instructor. Chapter 9 - Sequences and Infinite Series 9.1 The entire section is covered. 9.2 The entire section is covered except for the following: Not covered: Formal Definition of a Limit of a Sequence (bottom of page 635 and page 636, and problems 69-74 in the exercises.) 9.3 The entire section is covered. 9.4 Only some of this section is covered (see below.) Covered: The Divergence Test (pg. 648-649.) Includes THEOREM 9.8. Covered: The Harmonic Series (pg. 649-651.) Includes THEOREM 9.9. However the proof for the divergence of the Harmonic series will not involve using an integral as in the textbook on pages 650 and 651. Covered: Properties of Convergent Series (pg. 657-659.) Includes THEOREM 9.13. Not covered: The Integral Test (middle of page 651 to page 653, and problems 19-28 in the exercises.) Not covered: Convergence of p-Series (pg. 653-654, and problems 29-34 in the exercises.) Not covered: Estimating Series with Positive Terms (bottom of page 654 to top of page 657, and problems 35-42 in the exercises.) 9.5 Only one topic is covered.
    [Show full text]
  • 2. Infinite Series
    2. INFINITE SERIES 2.1. A PRE-REQUISITE:SEQUENCES We concluded the last section by asking what we would get if we considered the “Taylor polynomial of degree for the function ex centered at 0”, x2 x3 1 x 2! 3! As we said at the time, we have a lot of groundwork to consider first, such as the funda- mental question of what it even means to add an infinite list of numbers together. As we will see in the next section, this is a delicate question. In order to put our explorations on solid ground, we begin by studying sequences. A sequence is just an ordered list of objects. Our sequences are (almost) always lists of real numbers, so another definition for us would be that a sequence is a real-valued function whose domain is the positive integers. The sequence whose nth term is an is denoted an , or if there might be confusion otherwise, an n 1, which indicates that the sequence starts when n 1 and continues forever. Sequences are specified in several different ways. Perhaps the simplest way is to spec- ify the first few terms, for example an 2, 4, 6, 8, 10, 12, 14,... , is a perfectly clear definition of the sequence of positive even integers. This method is slightly less clear when an 2, 3, 5, 7, 11, 13, 17,... , although with a bit of imagination, one can deduce that an is the nth prime number (for technical reasons, 1 is not considered to be a prime number). Of course, this method com- pletely breaks down when the sequence has no discernible pattern, such as an 0, 4, 3, 2, 11, 29, 54, 59, 35, 41, 46,..
    [Show full text]
  • Comprehensive Problem Bank for MA 108 (Formerly Part of MA 203)
    Department of Mathematics Indian Institute of Technology, Bombay Powai, Mumbai{400 076, INDIA. MA 203{Mathematics III Autumn 2006 Instructors: A. Athavale N. Nataraj R. Raghunathan (Instructor in-charge) G. K. Srinivasan Name : Roll No : Course contents of MA 203 (Mathematics III): Ordinary differential equations of the 1st order, exactness and integrating factors, variation of pa- rameters, Picard's iteration method. Ordinary linear differential equations of the nth order, solution of homogeneous and non-homogeneous equations. The operator method. The methods ofundetermined co- efficients and variation of parameters. Systems of differential equations, Phase plane. Critical points, stability. Infinite sequences and series of real and complex numbers. Improper integrals. The Cauchy criterion, tests of convergence, absolute and conditional convergence. Series of functions. Improper integrals depend- ing on a parameter. Uniform convergence. Power series, radius of convergence. Power series methods for solutions of ordinary differential equations. Legendre equation and Legendre polynomials, Bessel equations and Bessel functions of first and second kind. Orthogonal sets of functions. Sturm-Liouville problems. Or- thogonality of Bessel functions and Legendre polynomials. The Laplace transform. The Inverse transform. Shifting properties, convolutions, partial fractions. Fourier series, half-range expansions. Approximation by trignometric polynomials. Fourier integrals. Texts/References E. Kreyszig, Advanced Engineering Mathematics, 8th ed., Wiley Eastern, 1999. Teaching Plan [K] refers to the text book by E. Kreyszig, \Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons(1999). Policy for Attendance Attendance in both lectures and tutorial classes is compulsory. Students who fail to attend 80% of the lectures and tutorial classes may be awarded an XX grade. Evaluation: Figures in parentheses denote the percentage of the marks assigned to each quiz or exam.
    [Show full text]