Mechanotaxis Directs Pseudomonas Aeruginosa Twitching Motility
Mechanotaxis directs Pseudomonas aeruginosa twitching motility Marco J. Kühna,b,1, Lorenzo Talàa,b,1, Yuki F. Inclanc, Ramiro Patinoc, Xavier Pierrata,b, Iscia Vosa,b,d, Zainebe Al-Mayyaha,b, Henriette Macmillanc, Jose Negrete Jra,b,d, Joanne N. Engelc,e,2, and Alexandre Persata,b,2 aInstitute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; bGlobal Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; cDepartment of Medicine, University of California, San Francisco, CA 94143; dInstitute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and eDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94143 Edited by Dianne K. Newman, California Institute of Technology, Pasadena, CA, and approved June 10, 2021 (received for review January 28, 2021) The opportunistic pathogen Pseudomonas aeruginosa explores Pseudomonas aeruginosa is a major opportunistic pathogen surfaces using twitching motility powered by retractile extracellu- well adapted to growth on surfaces. P. aeruginosa colonizes and lar filaments called type IV pili (T4P). Single cells twitch by sequen- explores abiotic and host surfaces using twitching motility, which tial T4P extension, attachment, and retraction. How single cells is powered by retractile extracellular filaments called type IV pili coordinate T4P to efficiently navigate surfaces remains unclear. (T4P) (9). During twitching, single cells pull themselves by suc- We demonstrate that P. aeruginosa actively directs twitching in cessive rounds of T4P extension, attachment, and retraction (9, the direction of mechanical input from T4P in a process called 10).
[Show full text]