Distributed Deformation Across the Rio Grande Rift, Great Plains, and Colorado Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Deformation Across the Rio Grande Rift, Great Plains, and Colorado Plateau Geology, 40(1), 23-26, 2012 Distributed Deformation across the Rio Grande Rift, Great Plains, and Colorado Plateau Henry T. Berglund1, Anne F. Sheehan2, Mark H. Murray3, Mousumi Roy4, Anthony R. Lowry5, R. Steven Nerem6, and Frederick Blume1 1UNAVCO Inc, 6350 Nautilus Drive, Boulder, Colorado 80301-5553, USA 2Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA 3Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico 87801, USA 4Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131-1116, USA 5Department of Geology, Utah State University, Logan, Utah 84322-4505, USA 6Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado 80309-0429, USA ABSTRACT We use continuous measurements of GPS sites from across the Rio Grande Rift, Great Plains, and Colorado Plateau to estimate present-day surface velocities and strain rates. Velocity gradients from five east-west profiles suggest an average of ~1.2 nanostrains/yr east-west extensional strain rate across these three physiographic provinces. The extensional deformation is not concentrated in a narrow zone centered on the Rio Grande Rift but rather is distributed broadly from the western edge of the Colorado Plateau well into the western Great Plains. This unexpected pattern of broadly distributed deformation at the surface has important implications for our understanding of how low strain-rate deformation within continental interiors is accommodated. INTRODUCTION Global positioning system (GPS) monuments installed for the EarthScope Plate Boundary Observatory (PBO) and the Rio Grande Rift GPS experiment (Fig. 1) have greatly enhanced modern geodetic coverage of the physiographic regions of the Rio Grande Rift and the Colorado Plateau. More than 4 yr of continuous measurement at these sites provide a detailed map of the contemporary motion across the southwestern United States, where prior geodetic measurements are sparse and highly uncertain. Argus and Gordon (1996), using very long baseline interferometry (VLBI), found that the velocity of two sites on the Colorado Plateau differed from stable North America with upper bounds of ~4–5 mm/yr. At shorter spatial scales, classical trilateration across the Rio Grande Rift near Socorro, New Mexico, found no significant extension across the rift and gave an upper bound of ~1 mm/yr (Savage et al., 1980). Estimates of extension using geological methods in the Albuquerque Basin are on the order of 0.3 mm/yr (Woodward, 1977), while Golombek et al. (1983) estimated a rate of ~0.14 mm/yr across the Espanola basin in northern New Mexico for 5 Ma to present. More recently Kreemer et al. (2010) used PBO measurements to show that the western portion of the Colorado Plateau is moving westward ~1 mm/yr relative to stable North America. They did not detect significant extension across most of the Rio Grande Rift, except a possible ~0.5 mm/yr in the southernmost region. Here we estimate horizontal velocities for 284 continuously measured GPS monuments in a region straddling the Rio Grande rift and bordered by the southern Basin and Range to the south, the Great Plains to the east, and the northern Basin and Range to the west. Using these velocities, we investigate the contemporary kinematic field and calculate deformation rates along east-west velocity profiles across the study area (Fig. 1). Geology, 40(1), 23-26, 2012 Figure 1. Global positioning system (GPS) monuments in vicinity of the Rio Grande Rift and southern Rocky Mountains. The Rio Grande Rift Earthscope GPS experiment included construction of 25 GPS monuments (blue circles) in Colorado and New Mexico in 2006 and 2007. Regional EarthScope Plate Boundary Observatory and Continuously Operating Reference Station monuments are shown by gray triangles. Black lines denote major physiographic boundaries (Fenneman and Johnson, 1946). Basins referred to in text: SL—San Luis, E—Espanola, A— Albuquerque, JM—Jornado del Muerto, T—Tularosa. Red traces show location of the Wasatch fault zone in north-central Utah and the Williams Fork Mountains fault in north-central Colorado (U.S. Geological Survey and Colorado Geological Survey, 2006). ––––––––––––––––––––– TECTONIC SETTING The surface expression of the Rio Grande Rift consists of a series of interconnected, north- south–trending asymmetrical grabens. Clearly defined rift grabens extend from Leadville, Colorado, in the north to Socorro, New Mexico, in the south, and include the San Luis, Espanola, and Albuquerque Basins. The rift’s fault-bounded basins are narrower in Colorado and northern New Mexico and widen southward, with widths ranging from ~25 to 50 km (Cordell, 1978). In addition, the rift geometry changes southward from a linear chain of narrow grabens to multiple, Geology, 40(1), 23-26, 2012 adjacent basins (e.g., the Jornada del Muerto and Tularosa Basins) as the rift transitions into the southern Basin and Range province between profiles 4 and 5 (Fig. 2). At depth, the seismic data show anomalously slow upper-mantle seismic velocity in a broad zone around the rift, continuing beyond the geologically mapped boundaries well into the Colorado Plateau and extending north into the southern Rocky Mountains (Lee and Grand, 1996; Dueker et al., 2001; Gao et al., 2004; Burdick et al., 2009). Upper mantle seismic attenuation (Q) maps show narrow zones of low Q correlated with the zone of surficial grabens rather than the region of low seismic velocities (Boyd and Sheehan, 2005). If low effective viscosity in the upper mantle correlates with the seismic velocity picture, then kinematic extension in the Rio Grande Rift may actually be broader than the surficial geologic boundaries of the rift. In contrast, if low effective viscosity in the upper mantle correlates with the attenuation anomaly, then extension is likely to localize in a narrow region correlating with surficial grabens. Contemporary crustal stress in western Colorado includes a roughly northeast-oriented extensional axis based on inversion of earthquake focal mechanisms (Bott and Wong, 1995). Seismicity within the Rio Grande Rift is dominantly normal faulting, with a minor amount of strike-slip (Keller et al., 1991; Herrmann et al., 2011). A disproportionate fraction of earthquake activity in New Mexico occurs in the middle of the Rio Grande Rift at Socorro, related to the Socorro magma body (e.g., Balch et al., 1997). GPS RESULTS AND INTERPRETATION We use data from 25 continuous GPS stations installed as part of the EarthScope Rio Grande Rift GPS experiment, supplemented by data from other GPS monuments in the southwestern United States, resulting in a data set of daily position estimates of 284 GPS monuments for the years 2006 through 2010. We use the GAMIT/GLOBK software (King and Bock, 1999) to obtain daily coordinates for the stations in the Rio Grande Rift GPS Experiment and for an additional 29 sites that are part of the Continuously Operating Reference Station (CORS) network (Snay and Soler, 2008; http://www.ngs.noaa.gov/CORS/). We combine the aforementioned position estimates with GPS coordinate estimates for 230 continuous sites available in the Solution Independent Exchange format (SINEX) from the PBO (http://pbo.unavco.org/data/gps). We constrain the rotation of North America by estimating six Helmert parameters (three translation, three rotation) for each day so that adjustments to a predetermined set of a priori values for a chosen group of stations are minimized. The a priori values for the stations that we use to constrain the rotation of North America are tabulated in Table DR1 in the GSA Data Repository1. We exclude sites located outside 28°N–65°N and 116°W–60°W from our analysis. We estimate velocities and uncertainties from the resulting position time series using the GAMIT/GLOBK software and account for annual and semi-annual sinusoidal terms in each time series. We restrict our analysis by excluding sites with <2.5 yr of data. The velocity estimates are tabulated in Table DR2 and shown in Figure 2. Horizontal velocities, shown in Figure 2, increase in magnitude from east to west toward the Pacific–North America plate margin in California. Velocity estimates in Idaho, northern Utah, northern Nevada, Wyoming, and Montana show a smooth clockwise rotation. This rotational pattern is consistent with prior results showing large-scale rotation about an axis in eastern Oregon (e.g., McCaffrey et al. 2007). Sites east of the Rio Grande Rift in eastern Colorado, eastern New Mexico, Texas, Oklahoma, Kansas, and Nebraska move very slowly (~<1mm yr–1) with respect to the North America frame. Geology, 40(1), 23-26, 2012 Figure 2. Locations of profile lines as numbered; west end of each profile line is the left side of Figure 3. Arrows indicate the direction and magnitude of GPS velocity estimates. Ellipses are 95% confidence. Thick black lines denote major physiographic boundaries (Fenneman and Johnson, 1946): MRM—middle Rocky Mountains, WB—Wyoming Basin, SRM—southern Rocky Mountains, CP—Colorado Plateau, GP—Great Plains, BR—Basin and Range. Light gray lines indicate state boundaries. Latitude at which each profile passes through 109°W is labeled on the right. Gray shaded region in Colorado and New Mexico indicates the rough extent of Rio Grande Rift basins. Williams Fork Mountains fault in north-central Colorado is indicated with a thick gray trace. ––––––––––––––––––––– To estimate strain rates, we project the observed GPS velocities onto five profiles (Fig. 2). The five profiles are oriented approximately parallel to the azimuths of the GPS velocities (N87E) along great circles that pass through 109°W at the labeled latitude (Fig. 2). The velocity components parallel to each profile are related to their distance along the profile (Fig. 3). Profiles include sites within ±100 km normal to each line (Fig. 2). We exclude sites with horizontal uncertainties >0.5 mm/yr from this analysis. Using weighted least squares linear regressions of Geology, 40(1), 23-26, 2012 the velocities, we calculate strain rates for several different distance intervals along profile lines 1–5.
Recommended publications
  • Bilek Earth and Environmental Sciences Dept
    Susan L. Bilek Earth and Environmental Sciences Dept. New Mexico Institute of Mining and Technology, Socorro, NM 87801 Email: [email protected] Webpage: https://nmt.edu/academics/ees/faculty/sbilek.php Professional Preparation: B.S., with honors, Geosciences, minor in Economics, Penn State University, May 1996 M.S., Earth Sciences/Geophysics, University of California, Santa Cruz, June 1998 M.S. Thesis title: Lower mantle heterogeneity beneath Eurasia imaged by parametric migration of shear waves Ph.D. Earth Sciences/Geophysics, University of California, Santa Cruz, June 2001 Ph.D. Dissertation title: Multi-scale examination of seismogenic zone processes in circum- Pacific subduction zones Turner Postdoctoral Fellow, Dept. Geological Sciences, University of Michigan, 2001-2003 Appointments: Professor, Earth and Environmental Science Dept., New Mexico Tech, 2014 – present Associate Professor, Earth and Environmental Sciences Dept., New Mexico Tech, 2008 – 2014 Assistant Professor, Earth and Environmental Sciences Dept., New Mexico Tech, 2003 – 2008 Selected Recent Synergistic Activities: National/International: Board of Directors, Seismological Society of America, 2020-2022 Associate Editor, Geophysical Research Letters, 2020-present Editorial Board, Tectonophysics, 2016-present Associate Guest Editor, Subduction Top to Bottom 2, special issue of Geospheres, 2016-present PI of IRIS PASSCAL Instrument Center, Oct 2013-present IRIS Board of Directors, 2010-2012, Board secretary 2012 Reviewer: NSF, NNSA, Science, Science Advances, Nature,
    [Show full text]
  • The Wasatch Fault
    The WasatchWasatchThe FaultFault UtahUtah Geological Geological Survey Survey PublicPublic Information Information Series Series 40 40 11 9 9 9 9 6 6 The WasatchWasatchThe FaultFault CONTENTS The ups and downs of the Wasatch fault . .1 What is the Wasatch fault? . .1 Where is the Wasatch fault? Globally ............................................................................................2 Regionally . .2 Locally .............................................................................................4 Surface expressions (how to recognize the fault) . .5 Land use - your fault? . .8 At a glance - geological relationships . .10 Earthquakes ..........................................................................................12 When/how often? . .14 Howbig? .........................................................................................15 Earthquake hazards . .15 Future probability of the "big one" . .16 Where to get additional information . .17 Selected bibliography . .17 Acknowledgments Text by Sandra N. Eldredge. Design and graphics by Vicky Clarke. Special thanks to: Walter Arabasz of the University of Utah Seismograph Stations for per- mission to reproduce photographs on p. 6, 9, II; Utah State University for permission to use the satellite image mosaic on the cover; Rebecca Hylland for her assistance; Gary Christenson, Kimm Harty, William Lund, Edith (Deedee) O'Brien, and Christine Wilkerson for their reviews; and James Parker for drafting. Research supported by the U.S. Geological Survey (USGS), Department
    [Show full text]
  • Appendix E High-Potential Historic Sites
    APPENDIX E HIGH-POTENTIAL HISTORIC SITES National Trails System Act, SEC. 12. [16USC1251] As used in this Act: (1) The term “high-potential historic sites” means those historic sites related to the route, or sites in close proximity thereto, which provide opportunity to interpret the historic significance of the trail during the period of its major use. Criteria for consideration as high-potential sites include historic sig­ nificance, presence of visible historic remnants, scenic quality, and relative freedom from intrusion.. Mission Ysleta, Mission Trail Indian and Spanish architecture including El Paso, Texas carved ceiling beams called “vigas” and bell NATIONAL REGISTER tower. Era: 17th, 18th, and 19th Century Mission Ysleta was first erected in 1692. San Elizario, Mission Trail Through a series of flooding and fire, the mis­ El Paso, Texas sion has been rebuilt three times. Named for the NATIONAL REGISTER patron saint of the Tiguas, the mission was first Era: 17th, 18th, and 19th Century known as San Antonio de la Ysleta. The beauti­ ful silver bell tower was added in the 1880s. San Elizario was built first as a military pre­ sidio to protect the citizens of the river settle­ The missions of El Paso have a tremendous ments from Apache attacks in 1789. The struc­ history spanning three centuries. They are con­ ture as it stands today has interior pillars, sidered the longest, continuously occupied reli­ detailed in gilt, and an extraordinary painted tin gious structures within the United States and as ceiling. far as we know, the churches have never missed one day of services.
    [Show full text]
  • Geology of the Cebolla Quadrangle, Rio Arriba County, New Mexico
    BULLETIN 92 Geology of the Cebolla Quadrangle Rio Arriba County, New Mexico by HUGH H. DONEY 1 9 6 8 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY STIRLING A. COLGATE, President STATE BUREAU OF MINES AND MINERAL RESOURCES FRANK E. KOTTLOWSKI, Acting Director THE REGENTS MEMBERS Ex OFFICIO The Honorable David F. Cargo ...................................... Governor of New Mexico Leonard DeLayo ................................................. Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott .........................................................................................Hobbs Henry S. Birdseye ............................................................................... Albuquerque Thomas M. Cramer ................................................................................... Carlsbad Steve S. Torres, Jr. ....................................................................................... Socorro Richard M. Zimmerly .................................................................................... Socorro For sale by the New Mexico Bureau of Mines and Mineral Resources Campus Station, Socorro, N. Mex. 87801—Price $3.00 Abstract The Cebolla quadrangle overlaps two physiographic provinces, the San Juan Basin and the Tusas Mountains. Westward-dipping Mesozoic rocks, Quaternary cinder cones and flow rock, and Quaternary gravel terraces occur in the Chama Basin of the San Juan
    [Show full text]
  • Geologic Summary of the Abiquiu Quadrangle, North-Central New Mexico Florian Maldonado and Daniel P
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/58 Geologic summary of the Abiquiu quadrangle, north-central New Mexico Florian Maldonado and Daniel P. Miggins, 2007, pp. 182-187 in: Geology of the Jemez Region II, Kues, Barry S., Kelley, Shari A., Lueth, Virgil W.; [eds.], New Mexico Geological Society 58th Annual Fall Field Conference Guidebook, 499 p. This is one of many related papers that were included in the 2007 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Sister Onfa: Uranian Missionary to Mesilla John Buescher
    ISSN 1076-9072 SOUTHERN NEW MEXICO HISTORICAL REVIEW Pasajero del Camino Real By Doña Ana County Historical Society Volume XXVIII Las Cruces, New Mexico January 2021 Doña Ana County Historical Society Publisher Board of Directors for 2021 President: Dennis Daily Southern New Mexico Historical Review Vice President: Garland Courts Secretary: Jim Eckles Sponsors Treasurer: Dennis Fuller Historian: Sally Kading Past President: Susan Krueger Bob and Cherie Gamboa At Large Board Members Frank and Priscilla Parrish Luis Rios Robert and Alice Distlehorst Sim Middleton Jose Aranda Susan Krueger and Jesus Lopez Daniel Aguilera James and Lana Eckman Bob Gamboa Buddy Ritter Merle and Linda Osborn Frank Brito Review Editor position open - contact [email protected] Review Factotum: Jim Eckles Dylan McDonald Mildred Miles Cover Drawing by Jose Cisneros (Reproduced with permission of the artist) George Helfrich The Southern New Mexico Historical Review (ISSN-1076-9072) is looking for original articles concern- Dennis Daily ing the Southwestern Border Region. Biography, local and family histories, oral history and well-edited Nancy Baker documents are welcome. Charts, illustrations or photographs are encouraged to accompany submissions. We are also in need of book reviewers, proofreaders, and someone in marketing and distribution. Barbara Stevens Current copies of the Southern New Mexico Historical Review are available for $10. If ordering by mail, Glennis Adam please include $2.00 for postage and handling. Back issues of the print versions of the Southern New Mexico Historical Review are no longer available. However, all issues since 1994 are available at the Leslie Bergloff Historical Society’s website: http://www.donaanacountyhistsoc.org.
    [Show full text]
  • Wasatch Fault
    WASATCH FAULT NORTHERN POI=ITION Raymond Lundgren WOODWARD· CLYDE ASSOCIATES George E.Hervert & B. A. Vallerga CONSULTING SOIL ENGINEERS AND GEOLOGISTS SAN FRANCISCO - OAKLAND - SAN JOSE OFFICES Wm.T.Black Lloyd S. Cluff Edward Margeson 2730 Adeline Street Keshavan Nair Oakland, Ca 94607 Lewis L.Oriard (415) 444-1256 Mahmut OtU5 C.J.VanTiI P. O. Box 24075 Oaklllnd, ea 94623 July 17, 1970 Project G-12069 Utah Geological and Mineralogical Survey 103 Utah Geological Survey Building University of Utah Salt Lake City, Utah 84112 Attention: Dr. William P. Hewitt Director Gentlemen: WASATCH FAULT - NORTHERN PORTION EARTHQUAKE FAULT INVESTIGATION AND EVALUATION The enclosed report and maps presents the results at our investigation and evaluation of the Wasatch fault from near Draper to Brigham City, Utah. The completion of this work marks another important step in Utah's forward-looking approach to minimizing the effects of earthquake and geologic hazards. We are proud to have been associated with the Utah Geological and Mineralogical Survey in completing this study, and we appreciate the opportunity of assisting you with such an inter­ esting and challenging problem. If we can be of further assistance, please do not hesitate to contact us. Very truly yours, {4lJ~ Lloyd S. Cluff Vice President and Chief Engineering Geologist LSC: jh Enclosure LOS ANGELES-ORANGE' SAN DIEGO' NEW YORK-CLIFTON' DENVER' KANSAS CITY-ST. LOUIS' PHILADELPHIA-WASHINGTON Affiliated with MATERIALS RESEARCH & DEVELOPMENT, INC. WASATCH FAULT NORTHERN PORTION EARTHBUAKE FAULT INVESTIGATION & EVALUATION av LLOYO S. CLUFF. GEORGE E. BROGAN & CARL E. GLASS PROPERll Of mAR GEOLOGICAL AND. MINfBAlOGICAL SURVEY A GUIDE·TO LAND USE PLANNING FOR UTAH GEOLOGICAL & MINERALOGICAL SURVEY WOODWARD- CLYDE & ASSOCIATES CONSULTING ENGINEERS AND GEOLOGISTS OAKLAND.
    [Show full text]
  • Quaternary Tectonics of Utah with Emphasis on Earthquake-Hazard Characterization
    QUATERNARY TECTONICS OF UTAH WITH EMPHASIS ON EARTHQUAKE-HAZARD CHARACTERIZATION by Suzanne Hecker Utah Geologiral Survey BULLETIN 127 1993 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 0 STATE OF UTAH Michael 0. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison, Director UGSBoard Member Representing Lynnelle G. Eckels ................................................................................................... Mineral Industry Richard R. Kennedy ................................................................................................. Civil Engineering Jo Brandt .................................................................................................................. Public-at-Large C. Williatn Berge ...................................................................................................... Mineral Industry Russell C. Babcock, Jr.............................................................................................. Mineral Industry Jerry Golden ............................................................................................................. Mineral Industry Milton E. Wadsworth ............................................................................................... Economics-Business/Scientific Scott Hirschi, Director, Division of State Lands and Forestry .................................... Ex officio member UGS Editorial Staff J. Stringfellow .........................................................................................................
    [Show full text]
  • Evidence for an Active Shear Zone in Southern Nevada Linking the Wasatch Fault to the Eastern California Shear Zone
    Evidence for an active shear zone in southern Nevada linking the Wasatch fault to the Eastern California shear zone Corné Kreemer, Geoffrey Blewitt, and William C. Hammond Nevada Bureau of Mines and Geology, and Nevada Seismological Laboratory, University of Nevada, Reno, Nevada 89557-0178, USA ABSTRACT In this study, our aim is to elucidate how present-day localized exten- Previous studies have shown that ~5% of the Pacifi c–North sion is transferred southward and westward from the Wasatch Fault zone America relative plate motion is accommodated in the eastern part by (1) analyzing data from continuous GPS stations, and (2) modeling of the Great Basin (western United States). Near the Wasatch fault the present-day strain rate tensor fi eld based on those GPS velocities and zone and other nearby faults, deformation is currently concentrated additional constraints from earthquake focal mechanisms. Considering the within a narrow zone of extension coincident with the eastern margin limited number of high-quality, long-running geodetic monuments, sig- of the northern Basin and Range. Farther south, the pattern of active nifi cant new insight can only be gained through integration of the comple- deformation implied by faulting and seismicity is more enigmatic. To mentary geodetic and moment tensor data sets. Our results provide new assess how present-day strain is accommodated farther south and insight into the question as to whether strain is being accommodated along how this relates to the regional kinematics, we analyze data from narrow zones separating rigid crustal blocks, such as farther to the north, continuous global positioning system (GPS) stations and model the or in a more diffuse manner, as it has over most of the history of the Basin strain rate tensor fi eld using the horizontal GPS velocities and earth- and Range.
    [Show full text]
  • Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6263-6276, MAY 10, 1986 Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift PAUL MORGAN1 Departmentof Geosciences,Purdue University,West Lafayette, Indiana WILLIAM R. SEAGER Departmentof Earth Sciences,New Mexico State University,Las Cruces MATTHEW P. GOLOMBEK Jet PropulsionLaboratory, CaliforniaInstitute of Technology,Pasadena Careful documentationof the Cenozoicgeologic history of the Rio Grande rift in New Mexico reveals a complexsequence of events.At least two phasesof extensionhave been identified.An early phase of extensionbegan in the mid-Oligocene(about 30 Ma) and may have continuedto the early Miocene (about 18 Ma). This phaseof extensionwas characterizedby local high-strainextension events (locally, 50-100%,regionally, 30-50%), low-anglefaulting, and the developmentof broad, relativelyshallow basins, all indicatingan approximatelyNE-SW •-25ø extensiondirection, consistent with the regionalstress field at that time.Extension events were not synchronousduring early phase extension and were often temporally and spatiallyassociated with major magmatism.A late phaseof extensionoccurred primarily in the late Miocene(10-5 Ma) with minor extensioncontinuing to the present.It was characterizedby apparently synchronous,high-angle faulting givinglarge verticalstrains with relativelyminor lateral strain (5-20%) whichproduced the moderuRio Granderift morphology.Extension direction was approximatelyE-W, consistentwith the contemporaryregional stress field. Late phasegraben or half-grabenbasins cut and often obscureearly phasebroad basins.Early phase extensionalstyle and basin formation indicate a ductilelithosphere, and this extensionoccurred during the climax of Paleogenemagmatic activity in this zone.Late phaseextensional style indicates a more brittle lithosphere,and this extensionfollowed a middle Miocenelull in volcanism.Regional uplift of about1 km appearsto haveaccompanied late phase extension, andrelatively minor volcanism has continued to thepresent.
    [Show full text]
  • Mosaic of New Mexico's Scenery, Rocks, and History
    Mosaic of New Mexico's Scenery, Rocks, and History SCENIC TRIPS TO THE GEOLOGIC PAST NO. 8 Scenic Trips to the Geologic Past Series: No. 1—SANTA FE, NEW MEXICO No. 2—TAOS—RED RIVER—EAGLE NEST, NEW MEXICO, CIRCLE DRIVE No. 3—ROSWELL—CAPITAN—RUIDOSO AND BOTTOMLESS LAKES STATE PARK, NEW MEXICO No. 4—SOUTHERN ZUNI MOUNTAINS, NEW MEXICO No. 5—SILVER CITY—SANTA RITA—HURLEY, NEW MEXICO No. 6—TRAIL GUIDE TO THE UPPER PECOS, NEW MEXICO No. 7—HIGH PLAINS NORTHEASTERN NEW MEXICO, RATON- CAPULIN MOUNTAIN—CLAYTON No. 8—MOSlAC OF NEW MEXICO'S SCENERY, ROCKS, AND HISTORY No. 9—ALBUQUERQUE—ITS MOUNTAINS, VALLEYS, WATER, AND VOLCANOES No. 10—SOUTHWESTERN NEW MEXICO No. 11—CUMBRE,S AND TOLTEC SCENIC RAILROAD C O V E R : REDONDO PEAK, FROM JEMEZ CANYON (Forest Service, U.S.D.A., by John Whiteside) Mosaic of New Mexico's Scenery, Rocks, and History (Forest Service, U.S.D.A., by Robert W . Talbott) WHITEWATER CANYON NEAR GLENWOOD SCENIC TRIPS TO THE GEOLOGIC PAST NO. 8 Mosaic of New Mexico's Scenery, Rocks, a n d History edited by PAIGE W. CHRISTIANSEN and FRANK E. KOTTLOWSKI NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES 1972 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY STIRLING A. COLGATE, President NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES FRANK E. KOTTLOWSKI, Director BOARD OF REGENTS Ex Officio Bruce King, Governor of New Mexico Leonard DeLayo, Superintendent of Public Instruction Appointed William G. Abbott, President, 1961-1979, Hobbs George A. Cowan, 1972-1975, Los Alamos Dave Rice, 1972-1977, Carlsbad Steve Torres, 1967-1979, Socorro James R.
    [Show full text]
  • Letter Regarding the Status of Open File Report Entitled, "Basin & Range-Age Reactivation of Rocky Mountain Structures
    # I 2 BUREAU OF ECONOiC GEOLOGY THE UNIVERSITY OF TEXAS AT AUSTIN W'M OCKET N0TROL lSt To78713-750-(512)471-1534or471-7721(jZE *87 JIN -9 A1O:26 June 1, 1987 WM RecorgFile WM Project / /WI Docket No. 13 Dr. Theodore J. Taylor Salt Repository Project Office )rLPDRt adI9 n _ __ ta_ . U. 3* Uepdriinent UT Energy Dii b.iO 110 North 25 Mile Avenue _ _______- Hereford, TX 79045 Reference: Contract No. DE-AC97-83WM466t M __ ______ Dear Dr. Taylor: Per a request from Susan Heston to Chris Lewis, the status of the open-file report entitled *Basin and Range-Age Reactiviation of Rocky Mountain Structures in the Texas Panhandle, (OF-WTWI-1986-3),m by R. Budnik, is as follows. Dr. Budnik left the Bureau in August, 1986. The manuscript was revised by Dr. Budnik to reflect comments from GSA reviewers and resubmitted to the Journal before DOE comments were received at the Bureau. The article was published in the February, 1987 issue of Geology. Please note the title of the article was changed, it is now entitled nLate Miocene Reactivation of Ancestral Rocky Mountain Structures in the Texas Panhandle: A Response to Basin and Range Extension." Three copies of the reprinted article are enclosed. Also, the above referenced article supersedes OF-WTWI-1986-3. If you have any questions, please do not hesitate to contact me. Sincerely, Asoc iat cto Associate Director DCR:CL:cl Enclosures cc: P. Archer (BPMD) S. Heston (SRPO) F. Brown C. Lewis T. Clareson (BPMD/GRC) J. Raney S.
    [Show full text]