The Role of Pygopus 2 in Neural Crest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Novel Ve-Zinc Nger-Related-Gene Signature Related to Tumor Immune
A novel ve-zinc nger-related-gene signature related to tumor immune microenvironment allows for treatment stratication and predicts prognosis in clear cell renal cell carcinoma patients Feilong Zhang Beijing Chaoyang Hospital Jiyue Wu Beijing Chaoyang Hospital Jiandong Zhang Beijing Chaoyang Hospital Peng Cao Beijing Chaoyang Hospital Zejia Sun Beijing Chaoyang Hospital Wei Wang ( [email protected] ) Beijing Chaoyang Hospital https://orcid.org/0000-0003-2642-3338 Research Keywords: Posted Date: February 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207677/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Background Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent renal malignant tumors, which survival rate and quality of life of ccRCC patients are not satisfactory. Therefore, identication of prognostic biomarkers of ccRCC patients will contribute to early and accurate clinical intervention and treatment, and then improve their prognosis. Methods We downloaded the original expression data of mRNAs from The Cancer Genome Atlas database and the zinc nger(ZNF)-related genes (ZRGs) from UniProt online database. Differentially expressed ZRGs (DE- ZRGs) was screened from tumor and adjacent nontumor tissues and functional enrichment analysis was conducted out. A ve-ZRG signature were constructed by univariate Cox regression, least absolute shrinkage and selection operator and multivariate Cox regression. Furthermore, we screened out independent prognosis-related factors to build a nomogram by univariate and multivariate Cox regression. Potential biological pathways of ve ZRGs were analyzed by Gene Set Enrichment Analysis (GSEA). Then, we further quantitatively analyze immune inltration and evaluate tumor microenvironment by single sample GSEA. -
Constitutive Scaffolding of Multiple Wnt Enhanceosome Components By
RESEARCH ARTICLE Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/ BCL9 Laurens M van Tienen, Juliusz Mieszczanek, Marc Fiedler, Trevor J Rutherford, Mariann Bienz* MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Wnt/b-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF- responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing b-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of b-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these b-catenin co-factors may coordinate Wnt and nuclear hormone responses. DOI: 10.7554/eLife.20882.001 *For correspondence: mb2@mrc- Introduction lmb.cam.ac.uk The Wnt/b-catenin signaling cascade is an ancient cell communication pathway that operates con- Competing interests: The text-dependent transcriptional switches to control animal development and tissue homeostasis authors declare that no (Cadigan and Nusse, 1997). -
Speech Sound Disorder Influenced by a Locus in 15Q14 Region
Behav Genet DOI 10.1007/s10519-006-9090-7 ORIGINAL PAPER Speech Sound Disorder Influenced by a Locus in 15q14 Region Catherine M. Stein Æ Christopher Millard Æ Amy Kluge Æ Lara E. Miscimarra Æ Kevin C. Cartier Æ Lisa A. Freebairn Æ Amy J. Hansen Æ Lawrence D. Shriberg Æ H. Gerry Taylor Æ Barbara A. Lewis Æ Sudha K. Iyengar Received: 27 September 2005 / Accepted: 23 May 2006 Ó Springer Science+Business Media, Inc. 2006 Abstract Despite a growing body of evidence in- phonological memory, and that linkage at D15S118 was dicating that speech sound disorder (SSD) has an un- potentially influenced by a parent-of-origin effect derlying genetic etiology, researchers have not yet (LOD score increase from 0.97 to 2.17, P = 0.0633). identified specific genes predisposing to this condition. These results suggest shared genetic determinants in The speech and language deficits associated with SSD this chromosomal region for SSD, autism, and PWS/AS. are shared with several other disorders, including dys- lexia, autism, Prader-Willi Syndrome (PWS), and An- Keywords Phonology Æ Speech Æ Language Æ gelman’s Syndrome (AS), raising the possibility of gene Parent-of-origin Æ Allele-sharing sharing. Furthermore, we previously demonstrated that dyslexia and SSD share genetic susceptibility loci. The present study assesses the hypothesis that SSD also Introduction shares susceptibility loci with autism and PWS. To test this hypothesis, we examined linkage between SSD Speech–sound disorder (SSD) is a common communi- phenotypes and microsatellite markers on the chromo- cation disorder of unknown etiology with an estimated some 15q14–21 region, which has been associated with prevalence of 15.2% in children at age 3, persisting in autism, PWS/AS, and dyslexia. -
Action Statement Floraflora and and Fauna Fauna Guarantee Guarantee Act Act 1988 1988 No
Action Statement FloraFlora and and Fauna Fauna Guarantee Guarantee Act Act 1988 1988 No. No. ### 108 Hooded Scaly-foot Pygopus nigriceps Description and Distribution The Hooded Scaly-foot Pygopus nigriceps belongs to the reptile family Pygopodidae, the legless or flap-footed lizards. Legless lizards are superficially snake-like; they lack forelimbs, and the hind limbs are reduced to a scaly flap just above the vent. Whilst their eyes are lidless and snake-like, there are several features that distinguish legless lizards from snakes. Most legless lizards have an obvious ear aperture, lacking in all snakes, and a broad fleshy tongue, compared to the deeply forked tongue of snakes. Most legless lizards also have a tail that, when unbroken, is considerably longer than their body. In contrast, the tail of snakes is considerably Hooded Scaly-foot, Pygopus nigriceps shorter than their body. The genus Pygopus Illustration by Peter Robertson Wildlife Profiles P/L © differs from other legless lizards on the basis of the combination of the following features: head covered with enlarged, symmetrical scales; smooth (compared to keeled) ventral scales; and the possession of eight or more preanal pores. Two species of Pygopus occur in Victoria. The Hooded Scaly-foot is a large legless lizard, attaining a total length of 475mm, and a snout- vent length of about 180mm. Females reach larger sizes than males. Variable in colour, the Hooded Scaly-foot may be pale grey to reddish-brown on the dorsal surface and whitish on the ventral surface. The dorsal scales may be dark-edged, forming a reticulated pattern, or individual pale and dark scales may form a vague longitudinal pattern. -
Inhibition of Nuclear Wnt Signaling: Challenges of an Elusive Target for Cancer Therapy
1 Inhibition of Nuclear Wnt Signaling: Challenges of an Elusive Target for Cancer Therapy Yung Lyou1*, Amber N. Habowski2, George T. Chen2, Marian L. Waterman2*. 1University of California Irvine Medical Center, Department of Medicine, Division of Hematology Oncology, 101 The City Drive South, Orange, CA, USA, 92868; 2University of California Irvine, Department of Microbiology and Molecular Genetics, Irvine, CA, USA, 92697. *Co-corresponding authors 2 Abstract The highly conserved Wnt signaling pathway plays an important role in embryonic development and disease pathogenesis, most notably cancer. The “canonical,” or - catenin-dependent Wnt signal initiates at the cell plasma membrane with the binding of Wnt proteins to Frizzled:LRP5/LRP6 receptor complexes, and is mediated by the translocation of the transcription co-activator protein, -catenin, into the nucleus. -catenin then forms a complex with TCF/LEF transcription factors to regulate multiple gene programs. These programs play roles in cell proliferation, migration, vasculogenesis, survival, and metabolism. Mutations in Wnt signaling pathway components that lead to constitutively active Wnt signaling drive aberrant expression of these programs and development of cancer. It has been a longstanding and challenging goal to develop therapies that can interfere with the TCF/LEF--catenin transcriptional complex. This review will focus on the i) structural considerations for targeting the TCF/LEF--catenin and co-regulatory complexes in the nucleus, ii) current molecules that directly target -
Elucidating the Roles of Wnt-Secretion and Β-Catenin's
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Elucidating the roles of Wnt-secretion and -catenin’s interaction partners in development and disease Zimmerli, Dario Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-165192 Dissertation Published Version Originally published at: Zimmerli, Dario. Elucidating the roles of Wnt-secretion and -catenin’s interaction partners in develop- ment and disease. 2018, University of Zurich, Faculty of Science. Elucidating the Roles of Wnt-Secretion and b-Catenin’s Interaction Partners in Development and Disease Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Dario Zimmerli von Oftringen, Aargau Promotionskommission Prof. Dr. Konrad Basler (Vorsitz und Leitung der Dissertation) Prof. Dr. Maries van den BroeK Prof. Dr. Sabine Werner Zürich, 2018 Summary ........................................................................................................................... 3 Zusammenfassung ............................................................................................................ 5 Introduction ...................................................................................................................... 7 Review ........................................................................................................................... -
Molecular Genetics of Dyslexia: an Overview
DYSLEXIA Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/dys.1464 ■ Molecular Genetics of Dyslexia: An Overview Amaia Carrion-Castillo1*, Barbara Franke2 and Simon E. Fisher1,2 1Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may con- tribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs. Copyright © 2013 John Wiley & Sons, Ltd. Keywords: molecular genetics; dyslexia; review INTRODUCTION Over the past decade or so, advances in molecular technologies have enabled researchers to begin pinpointing potential genetic risk factors implicated in human neurodevelopmental disorders (Graham & Fisher, 2013). A significant amount of work has focused on developmental dyslexia (specific reading disability). -
Pygopus (Squamata: Pygopodidae) from Mid-Holocene Cave Deposits, Western and South Australia
DOI: 10.18195/issn.0312-3162.25(1).2008.087-093 J?ecords 01 the Western Australian t'vll1sclIJJ1 25: 1-\7-93 (2001-\). Pygopus (Squamata: Pygopodidae) from mid-Holocene cave deposits, Western and South Australia 2 3 J Jim I. MeadIJ', Marci HolIenshead . , Sandra L Swift ', Christopher J. BelP and Alexander Baynes' '!Jepartment of Ccology, Northern Arizona University, Flagstaff, Arizona 1-\6011 USA; E-mail: james.Mead(onau.edu; "Departmcnt of Biological Sciences, Northern Arizona Universitv, Flagstaff, Arizona 1-\6011 USA. 'l,aboratory of Quaternarv Paleontology, Center for Environmental Sciences and Education, Northern Arizona University, Flagstaff, Arizona 1-\6011 USA. 'Department of Ceological Sciences, The jackson School of Ceoscicnccs, University of Texas at Austin, Austin, Tcxas 71-\712 USA. -'Department of Earth and Planetary Scicncl's, Wesll'rn Australian Museum, Locked Bag 49, Welshpool DC, WA 691-\6 Australia. Present address: Dcpartment of Ceosciences, East Tennessee State University, johnson City, Tennessee 37614 USA. E-mail: mead(uetsu.edu Abstract - We report fossil remains of pygopodid lizards of known or probable Ilolocenc deposits in Webbs Cave in Western Australia and Wombat Cave in South Australia. Knowledge of patterns of skeletal variation within and across pygopodid groups is insufficiently mature to permit species-level resolution. Confident identification of apomorphies to diagnose our specimens is limited by a general paucity of skeletal preparations of pygopodids. Preserved anatomical features on the fossils are interpreted in the context of published literature and putative apomorphies, and permit referral to the genus Pvgoplls. These specimens represent important additional records of Pvgopus, and contribute to an improved understanding of the evolution of faunal communities in the Holocene of western and southern Australia. -
Evolutionary Diversification of DYX1C1 Transcripts Via an HERV-H LTR Integration Event
Genes Genet. Syst. (2011) 86, p. 277–284 Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event Yun-Ji Kim1, Jae-Won Huh2, Dae-Soo Kim3, Kyudong Han4, Hwan-Mook Kim5 and Heui-Soo Kim1* 1Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea 2National Primate Research Center (NPRC), KRIBB, Ochang, Chungbuk 363-883, Republic of Korea 3Korean BioInformation Center, KRIBB, Daejeon 305-806, Republic of Korea 4Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea 5Department of Pharmacy, College of Pharmacy, Gachon University of Medicine and Science, Incheon 406-799, Republic of Korea (Received 21 May 2011, accepted 13 August 2011) DYX1C1 is a candidate gene for developmental dyslexia and has three alterna- tive pre-mRNA spliced forms in the human genome. One of the transcripts con- tains an HERV-H LTR that could affect the expression level of DYX1C1. We speculate that the HERV-H LTR integrated into the DYX1C1 locus in the catar- rhine lineage after its divergence from the platyrrhine lineage. Reverse tran- scription-PCR of the HERV-H LTR-related transcript produced four alternative forms from several human tissues. All of alternative forms were also identified in various rhesus macaque tissues. Through sequencing analysis of various pri- mate DNA samples, we found that a part of the HERV-H LTR sequence was dupli- cated within the DYX1C1 exon 9 only in catarrhines. However, the duplication event did not cause frameshift mutation of the DYX1C1 transcript. Taken together, this HERV-H LTR insertion into DYX1C1 has contributed to transcript diversification of DYX1C1 during primate evolution. -
Reptiles and Frogs of Gluepot Reserve (Updated June 2020)
Reptiles and Frogs of Gluepot Reserve (updated June 2020) Scientific name Common name Notes with reference to Gluepot Family Agamidae Dragon Lizards Ctenophorus spinodomus1 Eastern Mallee Dragon Terrestrial, associated with spinifex, commonly observed Ctenophorus pictus Painted Dragon Terrestrial, commonly observed Diporiphora nobbi Nobbi Dragon Terrestrial/arboreal, commonly observed Pogona vitticeps Central Bearded Dragon Terrestrial, commonly observed Family Gekkonidae Typical Geckos Gehyra versicolor2 Eastern Tree Dtella Arboreal, nocturnal, commonly observed on buildings Heteronotia binoei Bynoe’s Gecko Terrestrial, nocturnal, occasionally observed Family Carphodactylidae Knob-tails & others Nephrurus levis Smooth Knob-tailed Gecko Terrestrial, nocturnal, occasionally observed Family Diplodactylidae Diplodactylus furcosis Ranges Stone Gecko Terrestrial, nocturnal, occasionally observed Diplodactylus vittatus Eastern Stone Gecko Terrestrial, nocturnal, occasionally observed Lucasium damaeum Beaded Gecko Terrestrial, nocturnal, commonly observed Oedura cincta3 Inland Marbled Velvet Gecko Arboreal, nocturnal, on Black Oak, rarely observed Rhynchoedura angusta4 Border Beaked Gecko Terrestrial, nocturnal, occasionally observed. Strophurus elderi Jewelled Gecko Terrestrial, nocturnal, in spinifex, occasionally observed Strophurus williamsi Eastern Spiny-tailed Gecko Terrestrial/arboreal, nocturnal, occasionally observed Family Pygopodidae Legless Lizards Aprasia inaurita Red-tailed Worm Lizard Terrestrial, rarely observed, often under -
Inter-Chromosomal Variation in the Pattern of Human Population Genetic Structure Tesfaye M
PRIMARY RESEARCH Inter-chromosomal variation in the pattern of human population genetic structure Tesfaye M. Baye* Cincinnati Children’s Hospital Medical Center, Division of Asthma Research, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA *Correspondence to: Tel: þ1 513 803 2766; Fax: þ1 513 636 1657; E-mail: [email protected] Date received (in revised form): 1st March 2011 Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC), cluster, discriminant, fix- ation index (FST) and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homo- geneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2), hect domain and RLD 2 (HERC2), ectodysplasin A receptor (EDAR) and solute carrier family 45, member 2 (SLC45A2). -
Genome-Wide Association Scan Identifies New Variants Associated
Gialluisi et al. Translational Psychiatry (2019) 9:77 https://doi.org/10.1038/s41398-019-0402-0 Translational Psychiatry ARTICLE Open Access Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia Alessandro Gialluisi 1,2,3, Till F. M. Andlauer 1,2, Nazanin Mirza-Schreiber1,KristinaMoll4, Jessica Becker5,6, Per Hoffmann 5,6, Kerstin U. Ludwig 5,6,DarinaCzamara 1,BeateStPourcain 7,8,9, William Brandler10, Ferenc Honbolygó11,DénesTóth11,ValériaCsépe11, Guillaume Huguet12,13, Andrew P. Morris14,15, Jacqueline Hulslander16, Erik G. Willcutt16, John C. DeFries16,RichardK.Olson16, Shelley D. Smith17, Bruce F. Pennington18, Anniek Vaessen19,UrsMaurer20, Heikki Lyytinen21, Myriam Peyrard-Janvid22, Paavo H. T. Leppänen21, Daniel Brandeis23,24,25,26, Milene Bonte19,JohnF.Stein 27,JoelB.Talcott 28, Fabien Fauchereau12,13, Arndt Wilcke29,ClydeFrancks7,8, Thomas Bourgeron12,13, Anthony P. Monaco15,30, Franck Ramus 31, Karin Landerl32,JuhaKere 22,33,34,ThomasS.Scerri15,35, Silvia Paracchini 36,SimonE.Fisher 7,8, Johannes Schumacher5,6,MarkusM.Nöthen5,6, Bertram Müller-Myhsok1,2,37 and Gerd Schulte-Körne4 Abstract Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562–3468).