ZED-2 – 60+ Years of Success L.R
Total Page:16
File Type:pdf, Size:1020Kb
ZED-2 – 60+ Years of Success L.R. Yaraskavitch Reactor Physicist, ZED-2 Nuclear Science Week 2020 ‐ CNS Lecture October 21, 2020 UNRESTRICTED / ILLIMITÉ -1- CW‐123110‐001‐000 ZED-2… Z-2… ZEEP-2 •ZEEP provides the why for ZED‐2 •Morgan Brown has set the stage last night: “The 75th Anniversary of ZEEP” UNRESTRICTED / ILLIMITÉ -2- ZEEP Mark II Why? Limitations of ZEEP (6th UK-Canada Technical Conference, 1957) • A number of outstanding problems in the way of determining optimum design for power reactor and ZEEP couldn’t address them because: • Size of ZEEP (small, calandria diameter 2.06m) best suited to more reactive lattices (e.g., metal) • Size of lattices desirable for heavy water power reactors was larger than ZEEP could accommodate • At the larger spacing to test power reactor lattices, substitution regions were necessary, but with a reactive outer ring. Subject to high uncertainty! • Too small to look at flux flattening (also desirable for power reactor lattices) UNRESTRICTED / ILLIMITÉ -3- “A Proposal for Zed 2: A Large ZEEP Type Reactor” Jan 1958 (various authors) • To quote D. W. Hone (from CNS Bulletin Vol. 21 No.1): “An additional low power lattice testing reactor is required … to obtain rapidly more accurate experimental measurements on which to choose an optimum design of power reactor.” • Hone (Senior ZEEP Physicist) would later become first Senior ZED-2 Physicist • Zed-2: to designate ZEEP-2 • the backronym Zero Energy Deuterium followed, now designation ZED-2 is used. UNRESTRICTED / ILLIMITÉ -4- “A Proposal for Zed 2: A Large ZEEP Type Reactor” • “Such a reactor would be used for the same type of measurements as are done in ZEEP, viz: • [reactivity] vs. lattice pitch … • critical size measurements … • fine structures through cells • temperature coefficients • void coefficients … [and] in addition • Flux distribution in rods in assemblies not necessarily uniform • Rapid measurements of the effect of various reflectors” UNRESTRICTED / ILLIMITÉ -5- So what was designed? • Low power – 200 W nominal, but a larger power than ZEEP • Bigger calandria with a flat bottom – 335 cm versus 206 cm • Shutdown: three dump valves + cadmium absorber rods. • Other noteworthy features (AECL-1301, “ZED-2… Canada’s newest research reactor”, A.E. Foster) • Cadmium control ring between calandria and graphite • Originally intended to have automatic power controller • Moderator heating capability • Channel heating capability • Lattice change mechanism – change lattice pitch remotely via mirrors and lights without opening lid/shielding • Removable graphite segments for reflector testing UNRESTRICTED / ILLIMITÉ -6- UNRESTRICTED / ILLIMITÉ -7- Construction • Foster-Wheeler chosen to construct the facility February 6, 1959 June 8 1959 UNRESTRICTED / ILLIMITÉ -8- Reflector • Assembly of 1277 graphite bricks • 90 cm thick axially, ~60 cm thick radially • Note penetrations UNRESTRICTED / ILLIMITÉ -9- Vessel • Cylindrical Al calandria • 3.36 m diameter • 3.35 m height UNRESTRICTED / ILLIMITÉ -10- First Critical 7 September 1960, 13:15 • Using 7 element natural UO2 fuel bundles • 5 per channel, 55 channels • 24.56 cm pitch, hexagonal lattice • Estimated Hc: 164.3 cm/166 cm • Measured: 166.3 cm • Similar experiments described in AECL-1505 UNRESTRICTED / ILLIMITÉ -11- UNRESTRICTED / ILLIMITÉ -12- Circa 1970s ZED-2 • Open vessel – fuel support beams and hangers • Rolling top shields • Fuel storage racks • Control room UNRESTRICTED / ILLIMITÉ -13- 2014 ZED-2 Operations UNRESTRICTED / ILLIMITÉ -14- Graphite Reflector UNRESTRICTED / ILLIMITÉ -15- Dump Valves UNRESTRICTED / ILLIMITÉ -16- Dump Tanks UNRESTRICTED / ILLIMITÉ -17- UNRESTRICTED / ILLIMITÉ -17- ZED-2 Control Room UNRESTRICTED / ILLIMITÉ -18- Fuel • Natural UO2 Bundles • 7-, 18-, 19-, 28-, 37- and 43-element • Other NU flavours • Carbide • Silicide • Metal (ZEEP rods, 19-el, 36-el) • Mixed oxides • Pu-U (Depleted) (simulated mid-burnup) • 233U-Th • Pu-Th • 235U-Th • Bundles with absorber elements (LVRF) • Enriched UO2 bundles (LEU, SEU, RU) • Booster rods (LEU/HEU + Zr/Al) UNRESTRICTED / ILLIMITÉ -19- Coolants To reproduce materials and geometry, not to ‘cool’ • D2O (incl. bubbled) (supported CANDU-PHWR) • H2O (incl. bubbled) (supported CANDU-BLW) • HB-40 (terphenyl, organic coolant) (supported CANDU-OCR) • Helium • CO2 • Pb-Bi • Highest temperature (electrically heated): 300 °C • Bonus fact, lowest temperature reached: -196.15 °C (liquid nitrogen cryostat used to cool wax moderator to measure eff. cross sections at very low temperatures) UNRESTRICTED / ILLIMITÉ -20- Fuel Lattices in ZED-2 UNRESTRICTED / ILLIMITÉ -21- Timeline • 60’s – Metal and oxide fuels, D2O, air, He, organic coolants, pitches from 20 cm to 40 cm (CANDU support). Carbide measurements in international collaboration. • 70’s – simulated boiling light water (CANDU BLW), enriched U booster rods, liquid absorbers, coupled cores, kinetics measurements, (Pu, U)O2, shutoff rod materials and shapes, reactor regulating systems, Self Powered Flux Detectors, NRU loop site simulation, adjuster rods, 37 el. lattice physics, Th-UO2, NRX, 99 • 80’s – Co and Cd absorber rods, (Pu, Th)O2, Mo for NRU, simulated 233 NRU loop, simulated burned up fuel, ( U, Th)O2 • 90’s – Coolant Void Reactivity (fresh and mid-burnup), delayed neutrons, Low Void Reactivity Fuel, 43 element CANFLEX • 00’s – Advanced CANDU Reactor 233 • 10’s – Reactor kinetics, (Pu, Th)O2, ( U, Th)O2 UNRESTRICTED / ILLIMITÉ -22- Evolution of Use • 60’s – Lattice recipes, two energy group calculations, four factor formula – driven by obtaining experimental data (and training reactor physicists)! • Included buckling, 238U/235U fission ratios, reaction rates, fine structure, etc. … Increasing computational power, availability of computational tools, increase in quality of available nuclear data, increasing experience … • 10’s – Verification/validation of nuclear data and computer codes, especially at the edges of the existing parameter space! • And calibrations + irradiations UNRESTRICTED / ILLIMITÉ -23- The 10s: ZED-2 School 9 iterations, 154 attendees, 24 different organizations • Outcome of 50th Anniversary • Focus on education • A week of lectures, demonstrations, and sharing ideas. UNRESTRICTED / ILLIMITÉ -24- The 10s: Transients Zeller and Atfield, CNL Nucl. Rev., Vol. 4 No. 1 (2015) UNRESTRICTED / ILLIMITÉ -25- The 10s: Advanced Fuel Cycles • First such transients in ZED-2 with nuclides other than 235U and 238U • Most fissions due to Pu and 233U ever in ZED-2 “Kinetics experiments in ZED-2 using heterogeneous cores of advanced nuclear fuels”, Annals of Nuclear Energy, 121 (2018) 36-49. UNRESTRICTED / ILLIMITÉ -26- The 10s: Fast Neutron Rod Recommissioning capability • ‘Transformer Rod’ of U- metal from 1960’s of interest once more for fast neutron irradiation and spectrum manipulation. • Fast flux on order of 108 nv • Thermal flux trimmed with Cd • Appreciable dose to biological samples UNRESTRICTED / ILLIMITÉ -27- Other Heavy Water Moderated ZPRs • USA: Process Development Pile (1953), Pawling (1958) • France: Aquilon (1956) • Belgium: VENUS (1964) (Now VENUS-F) • UK: DIMPLE (1954), DAPHNE (1962), JUNO (1964) • Serbia: RB (1958) • Sweden: R-0 (1959) • Norway: NORA (1961) • India: Zerlina (1961), Facility for AHWR/PHWR (2008) • Italy: ECO (1965), RB-3 (1971) • South Africa: Penlinduna-0 (1967) • Japan: Deuterium Critical Assembly (1969) • Czech Republic: TR-0 (1972) (Now LR-0) • Iran: HWZPR (1995) Legend: • Russia: MAKET (1976) Decommissioned/Shutdown Still Operating UNRESTRICTED / ILLIMITÉ -28- How do we stand in 2020? • American Nuclear Society Nuclear Historic Landmark (awarded 2010) • 2529 cores, 196+ of them unique, and counting • On core designation GN – started at A, but subscripts seem to have been used sometimes… • Building on the work of multiple generations of operators and experimenters, a dedicated team of operations staff and experimenters continue to use ZED-2 for Federal Science & Technology work for Government of Canada and commercial projects. • Take away: ZED-2 is an integral part of the reactor physics design of all Canadian power reactors, and much more! UNRESTRICTED / ILLIMITÉ -29- Looking to the future… • A.G. Ward, The Role of Critical Experiments in the Chalk River Power Programme, Proc., Exponential and Critical Experiments, Amsterdam 2-6 Sept. 1963, IAEA “Although one may hope for the day when the reactor-physics calculations are confidently based on computer programmes, with no recourse to experimental or critical facilities, it seems likely this happy time will only arrive when new reactor designs are no longer of interest” • Currently working towards understanding role that can be played in validation of reactor physics of SMR designs (e.g., press release on Terrestrial Energy integral molten salt reactor) UNRESTRICTED / ILLIMITÉ -30- Acknowledgements ZED-2 Facility: D. Brushey, J. Horner, S. Mirault, D. Trudeau, G. Hamilton, K. Thomson, M. Crowe Applied Physics: J. Atfield, J. Chow, N. Lee, L. Li, X. Wang, E. Rand, S. Livingstone, R. Rogge Computational Techniques: K. Hartling, B. Bromley, F. Adams UNRESTRICTED / ILLIMITÉ -31- Useful Websites http://www.cnl.ca Canadian Nuclear Laboratories http://www.cns-snc.ca Canadian Nuclear Society http://www.nuclearfaq.ca Canadian Nuclear FAQ http://canteach.candu.org CANDU Owners Group Inc. (COG) CANTEACH Project http://inis.iaea.org IAEA International Nuclear Information System http://www.nuceng.ca/candu/ The Essential CANDU textbook http://www.nuclearheritage.ca The Society for the Preservation of