EMPG–17–01 G2-structures and quantization of non-geometric M-theory backgrounds Vladislav G. Kupriyanov1 and Richard J. Szabo2 1 Centro de Matem´atica, Computa¸c˜ao e Cogni¸c˜ao Universidade de Federal do ABC Santo Andr´e, SP, Brazil and Tomsk State University, Tomsk, Russia Email:
[email protected] 2 Department of Mathematics, Heriot-Watt University Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, U.K. and Maxwell Institute for Mathematical Sciences, Edinburgh, U.K. and The Higgs Centre for Theoretical Physics, Edinburgh, U.K. Email:
[email protected] Abstract We describe the quantization of a four-dimensional locally non-geometric M-theory back- ground dual to a twisted three-torus by deriving a phase space star product for deformation quantization of quasi-Poisson brackets related to the nonassociative algebra of octonions. The construction is based on a choice of G2-structure which defines a nonassociative de- formation of the addition law on the seven-dimensional vector space of Fourier momenta. We demonstrate explicitly that this star product reduces to that of the three-dimensional parabolic constant R-flux model in the contraction of M-theory to string theory, and use it to derive quantum phase space uncertainty relations as well as triproducts for the nonasso- ciative geometry of the four-dimensional configuration space. By extending the G2-structure to a Spin(7)-structure, we propose a 3-algebra structure on the full eight-dimensional M2- arXiv:1701.02574v2 [hep-th] 6 Mar 2017 brane phase space which reduces to the quasi-Poisson algebra after imposing a particular gauge constraint, and whose deformation quantisation simultaneously encompasses both the phase space star products and the configuration space triproducts.