Chlamydia (Chlamydophila) Pneumoniae in Animals: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Chlamydia (Chlamydophila) Pneumoniae in Animals: a Review Vet. Med. – Czech, 49, 2004 (4): 129–134 Review Article Chlamydia (Chlamydophila) pneumoniae in animals: a review L. P�������, J. C������� Veterinary Research Institute, Brno, Czech Republic ABSTRACT: An important discovery in the last couple of years is that humans are not the only natural hosts with which C. pneumoniae is the primary cause for the disease. Successively, the C. pneumoniae strain was isolated from horses, koala bears affected by ocular and genital infection, Australian and African frogs, from a Tanzanian cha- meleon, a green sea turtle living in the Cayman Islands, an iguana, puff adders and a Burmese python. All of the animals in which the C. pneumoniae was confirmed, were suffering from some form of illness that is also typical in humans when affected by this chlamydial species. All strains also showed a high similarity with the human C. pneumoniae strain (up to 100%). Keywords: epizootology of chlamydia; free-ranging animals; laboratory and domestic animals Chlamydia (Chlamydophila) pneumoniae (C. pneu- The transmission of C. pecorum to humans has not moniae) is a primary pathogen with humans. The occurred or has not been proved yet. present state of knowledge indicates that it plays According to a newly proposed classification the most important role in human pathology out of (Evere� and Andersen, 1997; Evere� et al., 1999) all chlamydia species. It is the most frequent cause the family Chlamydiaceae is divided into two gen- of respiratory infections. It is also one of the agents era: Chlamydia (includes the species C. trachomatis, in the pathological processes in other organs (joint C. muridarum, C. suis) and Chlamydophila (includes inflammation, genital infection and consequent the species C. pneumoniae, C. pecorum, C. psi�aci, fertility disorders etc.) and it is very likely that it C. abortus, C. caviae and C. felis). This opinion of is one of the factors leading to atherosclerosis, a these authors is in correspondence with the opinion co-factor of bronchopulmonal carcinoma and also of other authors (Meijer et al., 1997; Pudjiatmoko et of some disorders of the central nervous system. al., 1997; Hartley et al., 2001). However, the older According to present taxonomic criteria the family Chlamydia nomenclature is still being used more Chlamydiaceae contains only one genus Chlamydia o�en than the newly designed one. A final agree- which involves the four following species: C. tra- ment should therefore be reached in order to pre- chomatis, C. pneumoniae, C. psi�aci and C. pecorum. vent the indiscriminate use of both nomenclatures Natural hosts are: for Chlamydia trachomatis and o�en leading to unnecessary confusion. Chlamydia pneumoniae humans, for Chlamydia psit- C. trachomatis and C. pneumoniae have the most taci birds and some mammals, for Chlamydia pecorum relevant importance in human pathology. While in mammals (above all pigs and ca�le). C. trachomatis the last two decades the highest a�ention has been and C. pneumoniae are primary a human pathogens, paid to C. trachomatis as the germ causing genital the transmission of C. psi�aci to humans is possible chlamydiosis, dominating among the sexually as a rare occurrence like ornithosis and psi�acosis. transmi�able diseases (Black, 1997; Korych, 1998), Support of the Grant Agency of the Ministry of Health of the Czech Republic (IGA MZ CR No. NH/7026-3). 129 Review Article Vet. Med. – Czech, 49, 2004 (4): 129–134 Vet. Med. – Czech, 49, 2004 (4): 129–134 Review Article recent research indicates that it is C. pneumoniae, Britain was published by Storey et al. (1993). They which occupies the most important position in hu- characterized and taxonomically ordered one of man pathology out of all chlamydia species (Veznik the 15 isolates of chlamydia (N16) from the con- and Pospisil, 1997; Zampachova, 1998). The reason junctiva and throat swabs, which were carried out for this assertion is that C. pneumoniae is not only the with 300 horses (Equus caballus) affected by epizo- germ causing the frequent respiratory infections, otic (Wills et al., 1990). but that it can bring about processes which origi- Glassick et al. (1996) isolated from koalas seven nally used to be a�ributed solely to C. trachomatis chlamydial strains, which had been divided into (reactive arthritis, ocular, genital and dermatologic two genetic groups. The koala group A omp 2 se- infections) (Peeling and Brunham, 1996; Thomsen quence is 93% similar to the human C. pneumoniae et al., 1996; Bernhard et al., 2001; King et al., 2001). and also 99% similar to the horse strain (N16). The Furthermore the C. pneumoniae infection represents koala group B omp 2 sequence is only 71% similar to another risk factor for the development of athero- the koala group A strains. Later Jackson et al. (1999) sclerosis and also its destabilization, and because it published an epidemiological study on chlamydia can be a co-factor of the origin of the bronchopul- infections in two koala colonies (Phascolarctos ci- monal carcinoma and some other chronic diseases nereus) living in a free range koala population. The of the central nervous system (sclerosis multiplex prevalence of C. pneumoniae was being identified etc.) as suggested e.g. by Gran et al. (1993), Wimmer by a genus specific PCR in combination with a spe- et al. (1996), Wollenhaupt and Zeidler (1997), Wong cies-specific DNA in a process of hybridization. In et al. (1999), Sriram et al. (1999), Paavonen (2000). a population of koala bears of the first colony the C. pneumoniae was obtained for the first time in prevalence of a chlamydia infection was 85% (out of 1965 out of a conjunctiva of a Taiwanese child; the which C. pecorum was 73% and C. pneumoniae 24%). strain was marked TW-183. The second isolate from In the second group the prevalence was only at 10%, the throat of a student with pharyngeal inflamma- while the presence of both chlamydia species was tion took place in 1983 and was marked AR-39. The approximately balanced. It is necessary to mention original name for C. pneumoniae was TWAR agent that 5 out of 24 koalas infected by C. pecorum had and was formed by the connection of the names of clinical signs of the disease (ocular, genital), while the first two isolates (Kuoet al., 1986; Grayston et al., 7 animals infected by C. pneumoniae did not have 1986). The C. pneumoniae infection is cosmopolitan. any. The incidence of the C. pecorum infection in- The majority of the world population usually catch- creased with age (from 58% with young individuals es the infection more than once in a lifetime (Sodja, to 100% in an older age group). In this case sexual 1998; Sodja et al., 1998). The increase of prevalence transmission was undoubtedly a crucial factor. On of antibodies against C. pneumoniae with age proves the other hand, C. pneumoniae was affecting only this (1–4 years of age 22.2%, >20 years 63–79%, young sexually inactive individuals. >60 years 97.1%). Respiratory infections caused by According to a number of authors the C. pneumo- C. pneumoniae are usually mild. Nevertheless in a niae biovar isolated from koalas is different from significant amount of cases they can develop into a the human biovar (Jackson et al., 1999; Wardrop more serious form of disease (sinusitis, bronchitis, et al., 1999). Bode�i and Timms (2000) compared complicated pneumonia) (Grayston et al., 1993). the abilities of the “human” and “koala” biovars Another important discovery in recent years is of infecting mononuclear cells of the peripheral that humans are not the only hosts, with whom blood stream (as an important factor of the infec- C. pneumoniae causes primary disease. Its presence tion’s dissemination from the respiratory ways) and at infections (with C. pneumoniae as the primary they found out that this ability is not typical only for factor) occurring with various animal species is the biovar of human origin but also for the “koala” reported in an increasing number of cases. biovar and they claim that it is a typical quality of this particular chlamydia species. Another comparison of the C. pneumoniae “koala” C. pneumoniae occurring with domestic biovar was carried out by Coles et al. (2001). They and wild animals carried out research on the ability of infecting Hep-2 and human monocytes and also on the influence of One of the first studies proving the existence the infection on the formation of foam cells. “Koala” of nonhuman C. pneumoniae with horses in Great biovar creates big inclusions in human and koala 130 131 Review Article Vet. Med. – Czech, 49, 2004 (4): 129–134 Vet. Med. – Czech, 49, 2004 (4): 129–134 Review Article monocytes and in Hep-2 cells. “Koala” C. pneumo- The second case was a chameleon (Chameleo dilep- niae induces the formation of foam cells without the sis) from Tanzania. It had intracytoplasmatic inclu- addition of lipoprotein of a low density (LDL). sions in circulating monocytes. Similar inclusions The occurrence of C. pneumoniae with giant barred were found in the macrophage of the spleen and frogs (Mixophyes iteratus) was identified by Bergeret liver at the histological examination. Transmission al. (1999) again on the Australian continent. Reed et electron-microscopy proved the presence of chla- al. (2000) published a study on chlamydial epizootic mydia particles. in a colony of African clawed frogs (Xenopus tropica- The third case was a green sea turtle (Chelonia lis) brought to the USA, out of which 90% died. The mydas) from the Cayman British West Indies. It use of electron microscopy and cultivation on tissue was a member of a group of turtles epidemically cultures proved the presence of C. pneumoniae. affected by lethargy, anorexia and inability to digest The genetic characterization of C.
Recommended publications
  • Compendium of Measures to Control Chlamydia Psittaci Infection Among
    Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017 Author(s): Gary Balsamo, DVM, MPH&TMCo-chair Angela M. Maxted, DVM, MS, PhD, Dipl ACVPM Joanne W. Midla, VMD, MPH, Dipl ACVPM Julia M. Murphy, DVM, MS, Dipl ACVPMCo-chair Ron Wohrle, DVM Thomas M. Edling, DVM, MSpVM, MPH (Pet Industry Joint Advisory Council) Pilar H. Fish, DVM (American Association of Zoo Veterinarians) Keven Flammer, DVM, Dipl ABVP (Avian) (Association of Avian Veterinarians) Denise Hyde, PharmD, RP Preeta K. Kutty, MD, MPH Miwako Kobayashi, MD, MPH Bettina Helm, DVM, MPH Brit Oiulfstad, DVM, MPH (Council of State and Territorial Epidemiologists) Branson W. Ritchie, DVM, MS, PhD, Dipl ABVP, Dipl ECZM (Avian) Mary Grace Stobierski, DVM, MPH, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Karen Ehnert, and DVM, MPVM, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Thomas N. Tully JrDVM, MS, Dipl ABVP (Avian), Dipl ECZM (Avian) (Association of Avian Veterinarians) Source: Journal of Avian Medicine and Surgery, 31(3):262-282. Published By: Association of Avian Veterinarians https://doi.org/10.1647/217-265 URL: http://www.bioone.org/doi/full/10.1647/217-265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • Pdf/Bookshelf NBK368467.Pdf
    BMJ 2019;365:l4159 doi: 10.1136/bmj.l4159 (Published 28 June 2019) Page 1 of 11 Practice BMJ: first published as 10.1136/bmj.l4159 on 28 June 2019. Downloaded from PRACTICE CLINICAL UPDATES Syphilis OPEN ACCESS Patrick O'Byrne associate professor, nurse practitioner 1 2, Paul MacPherson infectious disease specialist 3 1School of Nursing, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; 2Sexual Health Clinic, Ottawa Public Health, Ottawa, Ontario K1N 5P9; 3Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario What you need to know Box 1: Symptoms of syphilis by stage of infection (see fig 1) • Incidence rates of syphilis have increased substantially around the Primary world, mostly affecting men who have sex with men and people infected • Symptoms appear 10-90 days (mean 21 days) after exposure with HIV http://www.bmj.com/ • Main symptom is a <2 cm chancre: • Have a high index of suspicion for syphilis in any sexually active patient – Progresses from a macule to papule to ulcer over 7 days with genital lesions or rashes – Painless, solitary, indurated, clean base (98% specific, 31% sensitive) • Primary syphilis classically presents as a single, painless, indurated genital ulcer (chancre), but this presentation is only 31% sensitive; – On glans, corona, labia, fourchette, or perineum lesions can be painful, multiple, and extra-genital – A third are extragenital in men who have sex with men and in women • Diagnosis is usually based on serology, using a combination of treponemal and non-treponemal tests. Syphilis remains sensitive to • Localised painless adenopathy benzathine penicillin G Secondary on 24 September 2021 by guest.
    [Show full text]
  • 2020 European Guideline on the Management of Syphilis
    DOI: 10.1111/jdv.16946 JEADV GUIDELINES 2020 European guideline on the management of syphilis M. Janier,1,* M. Unemo,2 N. Dupin,3 G.S. Tiplica,4 M. Potocnik, 5 R. Patel6 1STD Clinic, Hopital^ Saint-Louis AP-HP and Hopital^ Saint-Joseph, Paris, France 2WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Orebro€ University Hospital and Orebro€ University, Orebro,€ Sweden 3Syphilis National Reference Center, Hopital^ Tarnier-Cochin, AP-HP, Paris, France 42nd Dermatological Clinic, Carol Davila University, Colentina Clinical Hospital, Bucharest, Romania 5Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia 6Department of Genitourinary Medicine, the Royal South Hants Hospital, Southampton, UK *Correspondence to: M. Janier. E-mail: [email protected] Abstract The 2020 edition of the European guideline on the management of syphilis is an update of the 2014 edition. Main modifications and updates include: - The ongoing epidemics of early syphilis in Europe, particularly in men who have sex with men (MSM) - The development of dual treponemal and non-treponemal point-of-care (POC) tests - The progress in non-treponemal test (NTT) automatization - The regular episodic shortage of benzathine penicillin G (BPG) in some European countries - The exclusion of azithromycin as an alternative treatment at any stage of syphilis - The pre-exposure or immediate post-exposure prophylaxis with doxycycline in populations at high risk of acquiring syphilis. Received: 12 June 2020; Accepted: 4 September 2020 Conflicts of interest The authors have no conflicts of interest related to this guideline. Funding sources None. Introduction EEA countries and particularly among men who have sex with Syphilis is a systemic human disease due to Treponema pallidum men (MSM).3 subsp.
    [Show full text]
  • WHO GUIDELINES for the Treatment of Treponema Pallidum (Syphilis)
    WHO GUIDELINES FOR THE Treatment of Treponema pallidum (syphilis) WHO GUIDELINES FOR THE Treatment of Treponema pallidum (syphilis) WHO Library Cataloguing-in-Publication Data WHO guidelines for the treatment of Treponema pallidum (syphilis). Contents: Web annex D: Evidence profiles and evidence-to-decision frameworks - Web annex E: Systematic reviews for syphilis guidelines - Web annex F: Summary of conflicts of interest 1.Syphilis – drug therapy. 2.Treponema pallidum. 3.Sexually Transmitted Diseases. 4.Guideline. I.World Health Organization. ISBN 978 92 4 154980 6 (NLM classification: WC 170) © World Health Organization 2016 All rights reserved. Publications of the World Health Organization are available on the WHO website (http://www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (http://www.who.int/about/licensing/ copyright_form/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • What Is Lyme Disease?
    The threat of Lyme disease Dr Roger Evans Consultant Clinical Scientist National Lyme Borreliosis Testing Laboratory What is Lyme disease? • Also known as Lyme borreliosis • An infection caused by Borrelia burgdorferi sensu lato, a gram negative spirochaete bacterium • Transmitted through the bite of an infected tick (Ixodes ricinus in the UK) – a tick needs to be attached to the skin for around 24 hours to transmit Borrelia sp. to a person. • Recognised clinical presentations: early localized, early disseminated and late Lyme disease • There are large gaps in our clinical understanding of Lyme disease, particularly for ‘Post Treatment Lyme Disease Syndrome ‘ Picture credit: James Gathany Ixodes ricinus (tick) ecology/ life cycle Adapted from Manelli et al. 2011 Laboratory samples and cases of LB in Scotland 1996 to 2016 500 7000 450 6000 400 350 5000 300 4000 250 3000 200 Number of cases Number of samples 150 2000 100 1000 50 0 0 Cases Seroneg EM Year Samples GP study (2010-2012) • Three GP practices in NHS Highland region: Nairn, Culloden, Fort William • Number of laboratory cases compared to number of cases treated for Lyme disease without testing • About 2 x number of cases diagnosed by GP without lab testing compared to those that were tested • 2010-2011 • 1440 blood donors • Screened by EIA • EIA positive or equivocal samples confirmed by immunoblot (IB) • 60/1440 (4.2%) IB positive Munro et al (2015) Transfusion Medicine. Letter to the Editor doi: 10.1111/tme.12197 What does it cost? • Netherlands study (2010) – 5 health outcomes:
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Leptospirosis: a Waterborne Zoonotic Disease of Global Importance
    August 2006 volume 22 number 08 Leptospirosis: A waterborne zoonotic disease of global importance INTRODUCTION syndrome has two phases: a septicemic and an immune phase (Levett, 2005). Leptospirosis is considered one of the most common zoonotic diseases It is in the immune phase that organ-specific damage and more severe illness globally. In the United States, outbreaks are increasingly being reported is seen. See text box for more information on the two phases. The typical among those participating in recreational water activities (Centers for Disease presenting signs of leptospirosis in humans are fever, headache, chills, con- Control and Prevention [CDC], 1996, 1998, and 2001) and sporadic cases are junctival suffusion, and myalgia (particularly in calf and lumbar areas) often underdiagnosed. With the onset of warm temperatures, increased (Heymann, 2004). Less common signs include a biphasic fever, meningitis, outdoor activities, and travel, Georgia may expect to see more leptospirosis photosensitivity, rash, and hepatic or renal failure. cases. DIAGNOSIS OF LEPTOSPIROSIS Leptospirosis is a zoonosis caused by infection with the bacterium Leptospira Detecting serum antibodies against leptospira interrogans. The disease occurs worldwide, but it is most common in temper- • Microscopic Agglutination Titers (MAT) ate regions in the late summer and early fall and in tropical regions during o Paired serum samples which show a four-fold rise in rainy seasons. It is not surprising that Hawaii has the highest incidence of titer confirm the diagnosis; a single high titer in a per- leptospirosis in the United States (Levett, 2005). The reservoir of pathogenic son clinically suspected to have leptospirosis is highly leptospires is the renal tubules of wild and domestic animals.
    [Show full text]
  • Gonorrhea, Chlamydia, and Syphilis
    2019 GONORRHEA, CHLAMYDIA, AND SYPHILIS AND CHLAMYDIA, GONORRHEA, Dedication TAG would like to thank the National Coalition of STD Directors for funding and input on the report. THE PIPELINE REPORT Pipeline for Gonorrhea, Chlamydia, and Syphilis By Jeremiah Johnson Introduction The current toolbox for addressing gonorrhea, chlamydia, and syphilis is inadequate. At a time where all three epidemics are dramatically expanding in locations all around the globe, including record-breaking rates of new infections in the United States, stakeholders must make do with old tools, inadequate systems for addressing sexual health, and a sparse research pipeline of new treatment, prevention, and diagnostic options. Lack of investment in sexual health research has left the field with inadequate prevention options, and limited access to infrastructure for testing and treatment have allowed sexually transmitted infections (STIs) to flourish. The consequences of this underinvestment are large: according to the World Health Organization (WHO), in 2012 there were an estimated 357 million new infections (roughly 1 million per day) of the four curable STIs: gonorrhea, chlamydia, syphilis, and trichomoniasis.1 In the United States, the three reportable STIs that are the focus of this report—gonorrhea, chlamydia, and syphilis—are growing at record paces. In 2017, a total of 30,644 cases of primary and secondary (P&S) syphilis—the most infectious stages of the disease—were reported in the United States. Since reaching a historic low in 2000 and 2001, the rate of P&S syphilis has increased almost every year, increasing 10.5% during 2016–2017. Also in 2017, 555,608 cases of gonorrhea were reported to the U.S.
    [Show full text]
  • Syphilis NSW Control Guideline for Public Health Units
    Syphilis NSW Control Guideline for Public Health Units Revision history Version Date Revised by Changes Approval 1.0 01/06/2015 CDWG Revision CDNA/AHPPC 1.1 01/08/2016 CDB Case definition CHO 2.0 09/2016 CDB Update to align with the Syphilis Series of CHO National Guidelines (SoNG) v1.0 (endorsed 15 Jan 2015, released 21 Aug 2016), localised for NSW as indicated by [hard brackets]. 3.0 20/03/2019 CDB Update to align with the Syphilis Series of CHO National Guidelines (SoNG) v1.1 (endorsed 17 July 2018, released 03 Aug 2018), localised for NSW as indicated by [hard brackets]. 4.0 04/10/2019 CDB Update to implement timely follow-up of all CHO women of reproductive age in line with changing epidemiological trends in NSW as indicated by [hard brackets] 4.1 13/05/2021 CDB Updated to align with National Syphilis CHO (congenital) case definition v1.3 (endorsed 24 September 2020, implemented 1 January 2021, published 13 January 2021) 1. Summary ........................................................................................................................ 2 2. The disease ..................................................................................................................... 3 3. Routine prevention activities ............................................................................................. 5 4. Surveillance objectives ..................................................................................................... 5 5. Data management ..........................................................................................................
    [Show full text]
  • Chlamydia Trachomatis and Chlamydia Pneumoniae Interaction with the Host: Latest Advances and Future Prospective
    microorganisms Review Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective Marisa Di Pietro 1,* , Simone Filardo 1 , Silvio Romano 2 and Rosa Sessa 1 1 Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, 00185 Rome, Italy; simone.fi[email protected] (S.F.); [email protected] (R.S.) 2 Cardiology, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; [email protected] * Correspondence: [email protected] Received: 15 April 2019; Accepted: 14 May 2019; Published: 16 May 2019 Abstract: Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae. Keywords: Chlamydia trachomatis; Chlamydia pneumoniae; host-pathogen interaction 1. Introduction Currently, there is a renewed research interest in Chlamydiae that cause a broad spectrum of pathologies of varying severity in human, mainly Chlamydia trachomatis and Chlamydia pneumoniae [1,2]. Advances in molecular biology and, in particular, the recent advent of metagenomic analysis as well as the development of a stable genomic transformation system in Chlamydiae have significantly contributed to expanding our understanding of Chlamydia pathogenesis [3–5].
    [Show full text]
  • Laboratory Diagnostic Testing for Treponema Pallidum
    Laboratory Diagnostic Testing for Treponema pallidum Expert Consultation Meeting Summary Report January 13‐15, 2009 Atlanta, GA This report was produced in cooperation with the Centers for Disease Control and Prevention. Laboratory Diagnostic Testing for Treponema pallidum Expert Consultation Meeting Summary Report January 13‐15, 2009 Atlanta, GA In the last decade there have been major changes and improvements in STD testing technologies. While these changes have created great opportunities for more rapid and accurate STD diagnosis, they may also create confusion when laboratories attempt to incorporate new technologies into the existing structure of their laboratory. With this in mind, the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories (APHL) convened an expert panel to evaluate available information and produce recommendations for inclusion in the Guidelines for the Laboratory Diagnosis of Treponema pallidum in the United States. An in‐person meeting to formulate these recommendations was held on January 13‐15, 2009 on the CDC Roybal campus. The panel included public health laboratorians, STD researchers, STD clinicians, STD Program Directors and other STD program staff. Representatives from the Food and Drug Administration (FDA) and Centers for Medicare & Medicaid Services (CMS) were also in attendance. The target audience for these recommendations includes laboratory directors, laboratory staff, microbiologists, clinicians, epidemiologists, and disease control personnel. For several months prior to the in‐person consultation, these workgroups developed key questions and researched the current literature to ensure that any recommendations made were relevant and evidence based. Published studies compiled in Tables of Evidence provided a framework for group discussion addressing several key questions.
    [Show full text]
  • Genetic Diversity in Treponema Pallidum: Implications for Pathogenesis, Evolution and Molecular Diagnostics of Syphilis and Yaws ⇑ David Šmajs A, , Steven J
    Infection, Genetics and Evolution 12 (2012) 191–202 Contents lists available at SciVerse ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Review Genetic diversity in Treponema pallidum: Implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws ⇑ David Šmajs a, , Steven J. Norris b, George M. Weinstock c a Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic b Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA c The Genome Institute, Washington University, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108, USA article info abstract Article history: Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, Received 21 September 2011 include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, Received in revised form 5 December 2011 bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among Accepted 7 December 2011 these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi,a Available online 15 December 2011 treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum trepo- nemes revealed genes with potential involvement in human infectivity, whereas comparisons between Keywords: pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis Treponema pallidum treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular Treponema pallidum ssp. pertenue Treponema pallidum ssp. endemicum epidemiology with potential to detect more virulent strains, whereas genetic variability within a single Treponema paraluiscuniculi strain is related to its ability to elude the immune system of the host.
    [Show full text]