Searching with Two-Speed Autonomous Mobile Robots

Total Page:16

File Type:pdf, Size:1020Kb

Searching with Two-Speed Autonomous Mobile Robots Searching with Two-Speed Autonomous Mobile Robots by Fraser Lachlan MACQUARRIE A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science CARLETON UNIVERSITY OTTAWA,ONTARIO c 2015 ⃝ Fraser Lachlan MacQuarrie Abstract We introduce and study various search problems using mobile robots. Specifically we study the problems of exploration and patrolling using a new two-speed model of robots, as well as studying the problems of rendezvous and evacuation using a more traditional one-speed model of mobile robots. The problems are executed on a continuous finite domain by a swarm of n robots r1; r2; : : : ; rn. For the two-speed model, each robot ri has a walking speed wi and a searching speed si, where si < wi. At each moment a robot either moves through the domain with a speed not exceeding wi, or it performs a more elaborate task (such as searching) on the domain with speed not exceeding si. A search of an interval is completed when each of its points have been searched by at least one of the n two-speed robots. We want to develop efficient mobility schedules (algorithms) for the robots which complete the search of the interval as quickly as pos- sible. More exactly, we want to maximize the speed of the mobility schedule – defined as the ratio of the interval length compared to the time of completion of the schedule. For patrolling, a unit interval is to be patrolled collectively by n two-speed robots. A robot patrols a portion of the domain by searching it. Each robot is allowed to patrol only in one of the two directions (not necessarily the same for all robots). We want to schedule the perpetual movements of the robots to minimize the idle time, defined as the maximal time interval any point is not visited by some patrolling robot. We also study randomized rendezvous on a circle: Two one-speed robots begin at dif- ferent locations on a circle and want to minimize the time required to find each other. The robots have different speeds, are unaware of their own speed, are equipped with identical chronometers, and each have access to one or more random bits. Finally, we study the evacuation problem: Distributed on a unit circle are k exits; two identical one-speed robots are placed on the circle. The goal of the evacuation problem is to give an algorithm for the robots which minimizes the time required for both robots to reach an exit, in the worst case. ii Acknowledgements First and foremost, I would like to extend my deepest gratitude to my supervisor, Dr. Evangelos Kranakis, for his encouragement and advice during the course of my studies. His passion for computer science, extensive knowledge and positive outlook has been inspirational and helped me grow as researcher and person. I would also like to sincerely thank everyone who has collaborated on the research presented in this thesis. Finally, I am very thankful for the love and support of my friends and family who have given me the confidence and determination to achieve my academic and non-academic goals. iii Contents Abstract ii Acknowledgements iii Contents iv List of Tables vii List of Figures viii List of Algorithms ix 1 Introduction1 1.1 Searching with Two-Speed Robots....................2 1.2 Two-Speed Robot Model.........................4 1.3 Problem Domains.............................5 1.4 Problems Studied and Summary of Results................6 1.5 Related Work............................... 12 1.6 Publications................................ 22 2 Searching 25 2.1 Introduction................................ 25 2.1.1 Preliminaries and Notation.................... 26 2.1.2 Search Problems......................... 28 2.1.3 Robot Model for Searching.................... 30 2.1.4 Outline and Results........................ 30 2.2 The Beachcombers’ Problem....................... 32 2.2.1 Properties of Optimal Schedules................. 32 2.2.2 The Optimal Schedule...................... 40 2.2.3 Closed Formulas for the Optimal Schedule........... 42 iv Contents v 2.3 The Online Beachcombers’ Problem................... 45 2.3.1 Competitiveness of the Online Searching............ 48 2.3.2 Online Searching with W-uniform swarms............ 51 2.3.3 Online Searching for Totally Uniform Swarms......... 56 2.4 The Multi-source Beachcombers’ Problem................ 60 2.4.1 t-SBP as a Partitioning Problem and its Hardness........ 60 2.4.1.1 A Deterministic Approximation Guarantee for 2-SBP 65 2.4.1.2 An Exact Solution for t-SBP with S-uniform Swarms 68 2.4.2 A Randomized Algorithm for t-SBP............... 72 2.5 Conclusion and Open Problems...................... 78 3 Patrolling 80 3.1 Introduction................................ 80 3.1.1 Preliminaries and Notation.................... 82 3.1.2 Patrolling Problems........................ 82 3.1.3 Robot Model for Patrolling.................... 84 3.1.4 Outline and Results........................ 85 3.2 Optimal Fence Patrolling Centralized Algorithm............. 86 3.2.1 Schedule Obtained by a Centralized Algorithm......... 86 3.2.2 Lower Bound of the Centralized Schedule............ 87 3.2.3 Application to Transportation: Scheduling with Regular Delivery 89 3.3 Fence Patrolling in the Distributed Model................ 90 3.3.1 Distributed Optimal Schedule for Two Robots.......... 91 3.3.2 Distributed Schedule for n Primitive Robots........... 95 3.3.3 Dynamics for Regular Systems of Primitive Robots....... 97 3.3.4 Monotone Robot Collections, and Convergence......... 104 3.4 Conclusion................................ 111 4 Rendezvous 112 4.1 Introduction................................ 112 4.1.1 Preliminaries and Notation.................... 113 4.1.2 Rendezvous Problem....................... 113 4.1.3 Robot Model for Rendezvous.................. 114 4.1.4 Outline and Results........................ 114 4.2 Single Random Bit............................ 115 4.3 k + 1 Random Bits............................ 124 4.4 Rendezvous and Knowledge....................... 133 4.4.1 Unknown u and L ........................ 134 4.4.2 Known u and L .......................... 134 4.4.3 Unknown u and Known L .................... 138 4.4.4 Known u and Unknown L .................... 140 4.5 Conclusion................................ 141 Contents vi 5 Evacuation 143 5.1 Introduction................................ 143 5.1.1 Preliminaries........................... 144 5.1.2 Evacuation Problems....................... 145 5.1.3 Robot Model for Evacuation................... 145 5.1.4 Outline and Results........................ 147 5.2 Evacuation with a Single Exit....................... 148 5.3 Evacuation with k Exits.......................... 154 5.4 k-exit Evacuation with Arbitrary D and L ................ 157 5.5 Conclusion................................ 166 6 Conclusion and Future Work 167 6.1 Discussion................................. 167 6.2 Open Problems.............................. 172 6.3 Future Work................................ 172 Abbreviations 176 Nomenclature 177 Bibliography 178 Index 187 List of Tables 2.1 Competitive ratio of LeapFrog for collections of robots of size 2,3,4.. 57 4.1 Summary of performance of randomized rendezvous algorithms for two robots in a ring............................... 115 5.1 Costs of EvacuateL(D) for the Evacuation Problem with Fixed Initial Distance.................................. 146 5.2 Costs of Evacuate(D) for the Evacuation Problem with Chosen Ini- tial Distance................................ 146 vii List of Figures 2.1 Reducing the time of the first searcher as described in Lemma 2.4.... 33 2.2 Reducing the time of subsequent searchers as described in Lemma 2.4.. 34 2.3 Search configurations described in Lemma 2.5.............. 36 2.4 Search configurations described in Lemma 2.6.............. 37 2.5 Schedules produced by (a) Comb and (b) LeapFrog........... 49 2.6 Competitive ratio of LeapFrog as a function of the number of robots. 60 2.7 Effect of swapping a and b on outer intervals............... 70 3.1 Two robots r1; r2 patrolling in opposite directions............. 91 3.2 Two robots r1; r2 perpetually alternate between x(0) and x(1)...... 95 3.3 Two time consecutive bounces between robots ri; ri+1.......... 98 4.1 Initial configurations Aa and Ba for distance a L between robots... 117 ≤ 5.1 Example of an evacuation problem with 4 exits.............. 144 5.2 Single exit evacuation of colocated robots................. 149 1 L 5.3 Two robots starting at distance L explore the circle up to time t = 4 + 2 . 152 5.4 k-exit evacuation of colocated robots................... 154 5.5 Transforming a 4-exit evacuation with equally spaced exits to a single exit problem................................ 157 5.6 k-exit evacuation for EvacuateL(D).................. 159 5.7 Performance of Evacuate(D) for k = 2 exits............. 163 viii List of Algorithms 2.1 Comb .................................... 41 2.2 SwarmSpeed ............................... 47 2.3 LeapFrog ................................. 47 2.4 Swap-and-Expand ........................... 66 2.5 GreedyPartition ........................... 69 2.6 ObliviousRandomized ........................ 73 3.1 CentralizedPatrolling ...................... 86 3.2 OnlinePatrolling .......................... 92 3.3 DistributedPatrolling ...................... 96 3.4 DecideConverge ............................ 103 4.1 Rendezvous0 ............................... 116 4.2 Rendezvous0(t)............................. 118 4.3 Rendezvous0(~t = (t1; t2; :
Recommended publications
  • Rendezvous Search with Revealed Information: Applications to the Line
    J. Appl. Prob. 44, 1–15 (2007) Printed in England © Applied Probability Trust 2007 RENDEZVOUS SEARCH WITH REVEALED INFORMATION: APPLICATIONS TO THE LINE STEVE ALPERN,∗ London School of Economics Abstract The symmetric rendezvous problem on a network Q asks how two players, forced to use the same mixed strategy, can minimize their expected meeting time, starting from a known initial distribution on the nodes of Q. This minimum is called the (symmetric) ‘rendezvous value’of Q. Traditionally, the players are assumed to receive no information while playing the game. We consider the effect on rendezvous times of giving the players some information about past actions and chance moves, enabling each of them to apply Bayesian updates to improve his knowledge of the other’s whereabouts. This technique can be used to give lower bounds on the rendezvous times of the original game (without any revealed information). We consider the case in which they are placed a known distance apart on the line graph Q (known as ‘symmetric rendezvous on the line’). Our approach is to concentrate on a general analysis of the effect of revelations, rather than compute the best bounds possible with our technique. Keywords: Rendezvous; search; common interest game; team theory 2000 Mathematics Subject Classification: Primary 90B40 1. Introduction In this paper we consider how the revelation of information can affect an important unsolved problem in rendezvous theory: the symmetric rendezvous problem on the line or line graph (whose nodes are the integers, Z) posed in [1], dubbed . (In fact, given the recent solution by Weber [14] of the symmetric rendezvous problem on the complete graph K3,is arguably the main unsolved problem.) The problem begins with a chance move α, called the initial configuration.
    [Show full text]
  • Optimal Symmetric Rendezvous Search on Three Locations
    Optimal Symmetric Rendezvous Search on Three Locations Richard Weber Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB2 0WB email: [email protected] www.statslab.cam.ac.uk/~rrw1 In the symmetric rendezvous search game played on n locations two players are initially placed at two distinct locations. The game is played in discrete steps, at each of which each player can either stay where he is or move to a different location. The players share no common labelling of the locations. We wish to find a strategy such that, if both players follow it independently, then the expected number of steps until they are in the same location is minimized. Informal versions of the rendezvous problem have received considerable attention in the popular press. The problem was proposed by Steve Alpern in 1976 and it has proved notoriously difficult to analyse. In this paper we prove a 20 year old conjecture that the following strategy is optimal for the game on three locations: in each block of two steps, stay where you, or search the other two locations in random order, doing these with probabilities 1=3 and 2=3 respectively. This is now the first nontrivial symmetric rendezvous search game to be fully solved. Key words: rendezvous search; search games; semidefinite programming MSC2000 Subject Classification: Primary: 90B40; Secondary: 49N75, 90C22, 91A12, 93A14 OR/MS subject classification: Primary: Games/group decisions, cooperative; Secondary: Analysis of algorithms; Programming, quadratic 1. Symmetric rendezvous search on three locations In the symmetric rendezvous search game played on n locations two players are initially placed at two distinct locations.
    [Show full text]
  • Algorithm Design and Analysis in Wireless Networks Lin Chen
    Algorithm design and analysis in wireless networks Lin Chen To cite this version: Lin Chen. Algorithm design and analysis in wireless networks. Data Structures and Algorithms [cs.DS]. Paris-Sud XI, 2017. tel-01688436 HAL Id: tel-01688436 https://hal.archives-ouvertes.fr/tel-01688436 Submitted on 24 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Algorithm Design and Analysis in Wireless Networks Habilitation Thesis Lin CHEN Laboratoire de Recherche en Informatique (UMR 8623) Université Paris-Sud Defended on July 11, 2017 Committee M. Tamer BASAR Reviewer M. Pierre FRAIGNIAUD Reviewer M. Bruno GAUJAL Reviewer M. Eitan ALTMAN Examiner M. Joffroy BEAUQUIER Examiner Mme. Johanne COHEN Examiner M. Mérouane DEBBAH Examiner M. Fabio MARTIGNON Examiner Abstract Algorithms are perhaps the most fundamental and fascinating elements in computer science as a whole. Networks and networked systems are no exception. This habilitation thesis summarizes my research during the last eight years on some algorithmic problems of both fundamental and practical importance in modern networks and networked systems, more specifically, wireless net- works. Generically, wireless networks have a number of common features which form a common ground on which algorithms for wireless networks are designed.
    [Show full text]
  • THE THEORY of SEARCH GAMES and RENDEZVOUS INTERNATIONAL SERIES in OPERATIONS RESEARCH & MANAGEMENT SCIENCE Frederick S
    THE THEORY OF SEARCH GAMES AND RENDEZVOUS INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE Frederick S. Hillier, Series Editor Stanford University Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING Shanthikumar, J.G. & Sumita, U. / APPLIED PROBABILITY AND STOCHASTIC PROCESSES Liu, B. & Esogbue, A.O. / DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in MCDM Models, Algorithms, Theory, and Applications Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE Grassman, W.K. / COMPUTATIONAL PROBABILITY Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT Axsäter, S./ INVENTORY CONTROL Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE PROGRAMMING: Theory, Algorithms, and Applications Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of Multicriteria Methods Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH BLOCKING Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING Saaty, T. & Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE ANALYTIC HIERARCHY PROCESS Chatterjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed. Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR SCHEDULING PROJECTS Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING Feinberg, E. & Shwartz, A.
    [Show full text]
  • Download Book
    Lecture Notes in Computer Science 3279 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos New York University, NY, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Geoffrey M. Voelker Scott Shenker (Eds.) Peer-to-Peer Systems III Third International Workshop, IPTPS 2004 La Jolla, CA, USA, February 26-27, 2004 Revised Selected Papers 13 Volume Editors Geoffrey M. Voelker University of California, San Diego Department of Computer Science and Engineering 9500 Gilman Dr., MC 0114, La Jolla, CA 92093-0114, USA E-mail: [email protected] Scott Shenker University of California, Berkeley Computer Science Division, EECS Department 683 Soda Hall, 1776, Berkeley, CA 94720, USA E-mail: [email protected] Library of Congress Control Number: Applied for CR Subject Classification (1998): C.2.4, C.2, H.3, H.4, D.4, F.2.2, E.1, D.2 ISSN 0302-9743 ISBN 3-540-24252-X Springer Berlin Heidelberg New York This work is subject to copyright.
    [Show full text]
  • Study and Development of Power Control Schemes Within a Cognitive Radio-Based Game Theoretic Framework
    Aalborg Universitet (AAU) Institut for Elektroniske Systemer Study and Development of Power Control Schemes within a Cognitive Radio-based Game Theoretic Framework by Author: V´ıctor Alvarez´ Roig Advisors: Andrea Fabio Cattoni, Gustavo Wagner Oliveira da Costa Aalborg, April 2010 “Before anything else, preparation is the key to success” Alexander Graham Bell (1847-1922) Aalborg Universitet (AAU) Abstract Institut for Elektroniske Systemer Radio Access Technology by Author: V´ıctor Alvarez´ Roig The requirements of the International Telecommunication Union (ITU) for the 4th generation of mobile devices raised up to 100 Mbps for high and 1Gbps for low mobility conditions. Reaching such challenging targets requires the deployment of picocells and femtocells. These techniques permit to achieve large cell capacity but also lead to difficulties in terms of interference. The GRACE algorithm, based on Cognitive Radio and Game Theory, has shown a fair balance between cell capacity and outage as well as short convergence time, low complexity and easy scalability. The aim of this work is to find an efficient power control algorithm that fits GRACE these goals. Therefore, a study of Cognitive Radio, Game Theory and Power Control algorithms is developed and a new power control algorithm is proposed. The simulation results show that the Fractional Power Control can increase notably the outage performance and the energy saving to the mobile devices. Acknowledgements I would like to start thanking the Aalborg University for the opportunity to perform my Master’s Thesis here in Danmark and also to Nokia Siemens Networks for their facilities and economical support. I want to thank my supervisors Andrea and Gustavo for their advice and support during this time.
    [Show full text]
  • On the Encoding and Solving Partial Information Games Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru, Nathalie Sznajder, Leo Tible, Sébastien Tixeuil
    On the encoding and solving partial information games Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru, Nathalie Sznajder, Leo Tible, Sébastien Tixeuil To cite this version: Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru, Nathalie Sznajder, Leo Tible, et al.. On the encoding and solving partial information games. [Research Report] LIP6, Sorbonne Université, CNRS, UMR 7606; LINCS; CEA Paris Saclay; Sorbonne Université. 2018. hal-01790508 HAL Id: hal-01790508 https://hal.archives-ouvertes.fr/hal-01790508 Submitted on 20 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the encoding and solving of partial information games Yackolley Amoussou-Guenou1,2, Souheib Baarir1, Maria Potop-Butucaru1, Nathalie Sznajder1, L´eo Tible3, and S´ebastien Tixeuil1 1 Sorbonne Universit´e, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France 2 CEA, LIST, Gif-sur-Yvette, F-91191, France 3 Ecole´ normale sup´erieure Paris-Saclay, Cachan, France Abstract. In this paper we address partial information games restricted to memoryless strategies. Our contribution is threefold. First, we prove that for partial information games, deciding the existence of memoryless strategies is NP-complete, even for games with only reachability objec- tives.
    [Show full text]
  • Distributed Map Construction Master Thesis Media & Knowledge Engineering
    Distributed Map Construction Master Thesis Media & Knowledge Engineering By P.A.C. (Pjotr) Waasdorp, BSc. Distributed Map Construction Page I THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In MEDIA & KNOWLEDGE ENGINEERING By Pjotr Waasdorp Delft, the Netherlands Man-Machine Interaction Group Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology, The Netherlands http://mmi.tudelft.nl Distributed Map Construction Page II © 2010 P.A.C. Waasdorp Cover picture: A basic Microsoft Word 2007 option Distributed Map Construction Page III Distributed Map Construction Date: 19 April 2010 Place: Delft Author Supervisor Name: P.A.C. (Pjotr) Waasdorp Name: Prof. Dr. Drs. L.J.M. (Leon) Rothkrantz Student number: 1207482 Email: [email protected] Email: [email protected] Abstract Assume that two sub-graphs of a graph are available and that the graph represents the corridors in a building. Without using any previous knowledge on the entire graph, can these two sub-graphs be used to construct an extended view on the entire graph. To test this assumption a collection of algorithms will be designed and implemented which can fuse two sub-graphs (topological maps) together to achieve this extended view on the unknown environment. The main goal for this project will consist of the distributed construction of topological maps within a simulated environment, with the main focus on the used algorithm(s) for the fusion of multiple maps. This will be realized with the help of a “graph” data structure, a multi agent system and match and merge algorithms.
    [Show full text]
  • Pursuit-Evasion and Differential Games Under Uncertainties
    PURSUIT-EVASION AND DIFFERENTIAL GAMES UNDER UNCERTAINTIES A Thesis Presented to The Academic Faculty by Wei Sun In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology August 2017 Copyright c 2017 by Wei Sun PURSUIT-EVASION AND DIFFERENTIAL GAMES UNDER UNCERTAINTIES Approved by: Professor Panagiotis Tsiotras Professor Eric N. Johnson Committee Chair, Advisor School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Evangelos A. Theodorou, Professor Anthony J. Yezzi Co-Advisor School of Electrical and Computer School of Aerospace Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Eric Feron Date Approved: 17 May 2017 School of Aerospace Engineering Georgia Institute of Technology To my parents and my sister. iii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor Dr. P. Tsiotras for his support and guidance throughout my PhD studies. I would also like to extend my appreciation to my co-advisor Dr. E. A. Theodorou and other committee members: Dr. E. M. Feron and Dr. A. Yezzi for their true interest in evaluating my work. I owe the greatest debt of gratitude to my parents and my sister for their never ending support during my graduate studies. This work is dedicated to them as a token of appreciation. Lastly, but by no means least, I wish to thank my labmates Dr. Efstathios Bakolas, Dr. Nuno Filipe, Dr. Oktay Arslan, Mr. Ioannis Exarchos, Mr. Spyridon Zafeiropou- los, Mr. Florian Hauer, Mr. Changxi You among others who have given me many inspirations during my years at Georgia Tech.
    [Show full text]
  • Optimal Search in Discrete Locations: Extensions and New Findings
    Optimal Search in Discrete Locations: Extensions and New Findings Jake Clarkson, M.Sci.(Hons.), M.Res Submitted for the degree of Doctor of Philosophy at Lancaster University. July 2020 Abstract A hidden target needs to be found by a searcher in many real-life situations, some of which involve large costs and significant consequences with failure. Therefore, efficient search methods are paramount. In our search model, the target lies in one of several discrete locations according to some hiding distribution, and the searcher's goal is to discover the target in minimum expected time by making successive searches of individual locations. In Part I of the thesis, the searcher knows the hiding distribution. Here, if there is only one way to search each location, the solution to the search problem, discovered in the 1960s, is simple; search next any location with a maximal probability per unit time of detecting the target. An equivalent solution is derived by viewing the search problem as a multi-armed bandit and following a Gittins index policy. Motivated by modern search technology, we introduce two modes|fast and slow| to search each location. The fast mode takes less time, but the slow mode is more likely to find the target. An optimal policy is difficult to obtain in general, because it requires an optimal sequence of search modes for each location, in addition to a set of sequence-dependent Gittins indices for choosing between locations. For each mode, we identify a sufficient condition for a location to use only that search mode in an optimal policy.
    [Show full text]
  • Game Theory Approach in Multi-Agent Resources Sharing Tangui Le Gléau, Xavier Marjou, Tayeb Lemlouma, Benoît Radier
    Game Theory Approach in Multi-agent Resources Sharing Tangui Le Gléau, Xavier Marjou, Tayeb Lemlouma, Benoît Radier To cite this version: Tangui Le Gléau, Xavier Marjou, Tayeb Lemlouma, Benoît Radier. Game Theory Approach in Multi- agent Resources Sharing. 25th IEEE Symposium on Computers and Communications (ISCC), Jul 2020, Rennes, France. hal-02901236 HAL Id: hal-02901236 https://hal.archives-ouvertes.fr/hal-02901236 Submitted on 17 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Game Theory Approach in Multi-agent Resources Sharing Tangui Le Gleau´ Xavier Marjou Tayeb Lemlouma Benoit Radier Orange Labs Orange Labs IRISA Orange Labs Lannion, France Lannion, France Lannion, France Lannion, France [email protected] [email protected] [email protected] [email protected] Abstract—In multiple real life situations involving several network operators can exchange resources to reach an optimal agents, cooperation can be beneficial for all. For example, situation and we consider that their personal interest are driven some telecommunication or electricity providers may cooperate only by their personal utility (which can for example be in order to address occasional resources needs by giving to coopetitors some quantities of their own surplus while expecting considered as the quality of experience in telecommunications in return a similar service.
    [Show full text]
  • Scalable Compression and Transmission of Internet Multicast Video
    Scalable Compression and Transmission of Internet Multicast Video Steven Ray McCanne Report No. UCB/CSD-96-928 December 16, 1996 Computer Science Division (EECS) University of California Berkeley, California 94720 Scalable Compression and Transmission of Internet Multicast Video by Steven Ray McCanne B.S. (University of California, Berkeley) 1990 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor Martin Vetterli, Chair Professor Domenico Ferrari Professor Jim Pitman 1996 Scalable Compression and Transmission of Internet Multicast Video Copyright 1996 by Steven Ray McCanne 1 Abstract Scalable Compression and Transmission of Internet Multicast Video by Steven Ray McCanne Doctor of Philosophy in Computer Science University of California at Berkeley Professor Martin Vetterli, Chair In just a few years the ªInternet Multicast Backboneº, or MBone, has risen from a small, research curios- ity to a large scale and widely used communications infrastructure. A driving force behind this growth was our development of multipoint audio, video, and shared whiteboard conferencing applications that are now used daily by the large and growing MBone community. Because these real-time media are transmitted at a uniform rate to all the receivers in the network, the source must either run below the bottleneck rate or over- load portions of the multicast distribution tree. In this dissertation, we propose a solution to this problem by moving the burden of rate-adaptation from the source to the receivers with a scheme we call Receiver-driven Layered Multicast, or RLM.
    [Show full text]