Dissertation Docteur De L'université Du Luxembourg

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Docteur De L'université Du Luxembourg PhD-FSTM-2020-45 The Faculty of Sciences, Technology and Medicine DISSERTATION Defence held on 17/09/2020 in Esch-sur-Alzette to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE by Sergei TIKHOMIROV Born on 29 May 1991 in Moscow (USSR) SECURITY AND PRIVACY OF BLOCKCHAIN PROTOCOLS AND APPLICATIONS Dissertation defence committee Dr Alex Biryukov, dissertation supervisor Professor, Université du Luxembourg Dr Matteo Maffei Professor, TU Wien Dr Volker Müller, Chairman Associate Professor, Université du Luxembourg Dr Patrick McCorry CEO, PISA Research Dr Andrew Miller, Vice Chairman Assistant Professor, University of Illinois, Urbana-Champaign iii “Imagine there was a base metal as scarce as gold but with the following properties: – boring grey in colour – not a good conductor of electricity – not particularly strong, but not ductile or easily malleable either – not useful for any practical or ornamental purpose and one special, magical property: can be transported over a communications channel.” Satoshi Nakamoto v UNIVERSITY OF LUXEMBOURG Abstract Faculty of Science, Technology and Medicine Department of Computer Science Doctor of Philosophy Security and Privacy of Blockchain Protocols and Applications by Sergei TIKHOMIROV Bitcoin is the first digital currency without a trusted third party. This revolution- ary protocol allows mutually distrusting participants to agree on a single common history of transactions. Bitcoin nodes pack transactions into blocks and link those in a chain (the blockchain). Hash-based proof-of-work ensures that the blockchain is computationally infeasible to modify. Bitcoin has spawned a new area of research at the intersection of computer sci- ence and economics. Multiple alternative cryptocurrencies and blockchain projects aim to address Bitcoin’s limitations. This thesis explores the security and privacy of blockchain systems. In PartI, we study the privacy of Bitcoin and the major privacy-focused cryp- tocurrencies. In Chapter2, we explore the peer-to-peer (P2P) protocols underpin- ning cryptocurrencies. In Chapter3, we show how a network adversary can link transactions issued by the same node. We test the efficiency of this novel attack in real networks, successfully linking our own transactions. Chapter4 studies the pri- vacy characteristics of mobile cryptocurrency wallets. We discover that most wallets do not follow the best practices aimed at protecting users’ privacy. PartII is dedicated to the Lightning Network (LN). Bitcoin’s architecture em- phasizes security but severely limits transaction throughput. The LN is a promi- nent Bitcoin-based protocol that aims to alleviate this issue. It performs low-latency transactions off-chain but leverages Bitcoin’s security guarantees for dispute resolu- tion. We introduce the LN and outline the history of off-chain protocols in Chapter5. Then, in Chapter6, we introduce a probing attack that allows an adversary to dis- cover user balances in the LN. Chapter7 estimates the likelihood of various privacy attacks on the LN. In Chapter8, we describe a limitation on the number of concur- rent LN payments and quantify its effects on transaction throughput. Part III explores the security and privacy of Ethereum smart contracts. Bitcoin’s language for defining spending conditions is intentionally restricted. Ethereum is a blockchain network allowing for more programmability. Ethereum users can write programs in a Turing-complete high-level language called Solidity. These programs, called smart contracts, are stored on-chain along with their state. Chapter9 out- lines the history of blockchain-based programming. Chapter 10 describes Findel – a Solidity-based declarative domain-specific language for financial contracts. In Chapter 11, we classify the vulnerabilities in real-world Ethereum contracts. We then present SmartCheck – a static analysis tool for bug detection in Solidity pro- grams. Finally, Chapter 12 introduces an Ethereum-based cryptographic protocol for privacy-preserving regulation compliance. vii Acknowledgements This work would not be possible without the help and support of many people. This is an incomplete list of those to whom I would like to express my gratitude. First of all, I am deeply grateful to my advisor, Prof. Alex Biryukov, for the op- portunity to pursue my research interests and the invaluable guidance throughout this journey. I appreciate Prof. Volker Müller, A-Prof. Andrew Miller, Prof. Mat- teo Maffei, Dr. Patrick McCorry, and A-Prof. Arthur Gervais agreeing to serve as jury members. I thank my co-authors: Dmitry Khovratovich, Ekaterina Voskresen- skaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, Yaroslav Alexandrov, Pedro Moreno-Sanchez, Matteo Maffei, René Pickhardt, and Mariusz Nowostawski. I have learned a lot during our fruitful collaborations. A special thanks goes to Pe- dro Moreno-Sanchez and Matteo Maffei for inviting me to spend three months on a research visit at TU Wien in the beautiful city of Vienna. I thank my colleagues for the insightful and fun conversations: Aleksei Udovenko, Brian Shaft, Christof Beierle, Dag Arne Osvik, Daniel Dinu, Daniel Feher, Dmitry Khovratovich, Giuseppe Vitto, Johann Großschädl, Luan Cardoso dos Santos, Léo Perrin, Qingju Wang, Ritam Bhaumik, Shange Fu, Vesselin Velichkov, and Yann Le Corre. The country of Luxembourg and the University of Luxembourg generously pro- vided me with excellent research conditions. I specifically thank Fabienne Schmitz, Ida Ienna, and Catherine Violet for their assistance in administrative matters. A huge thanks goes to my co-hosts for the Basic Block Radio podcast Ivan Ivan- itskiy, Sergei Pavlin, and Alexander Seleznev, and to all our guests and listeners, for helping spread the word about decentralized technologies for the Russian-speaking audience. My deepest gratitude goes to my family for their endless love and support. I want to specifically thank my parents for encouraging me to pursue education abroad. Finally, I thank Satoshi Nakamoto. Your ingenious invention continues to amaze and inspire me. I admire your wisdom and humility. It is an honor to be a part of the movement you started. ix Contents Abstractv Acknowledgements vii 1 Introduction1 1.1 Foreword....................................1 1.2 Historical overview..............................2 1.2.1 Evolution of the Internet.......................2 1.2.2 Evolution of money.........................4 1.3 Bitcoin.....................................7 1.3.1 Bitcoin architecture..........................8 1.3.2 Is proof-of-work wasteful?.....................9 1.3.3 Professionalization of mining.................... 10 1.4 Challenges for cryptocurrencies....................... 12 1.4.1 Expressiveness............................ 12 1.4.2 Scalability............................... 13 1.4.3 Privacy................................. 13 1.5 Our contributions............................... 15 I Network privacy in Bitcoin and privacy-focused cryptocurrencies 17 2 P2P protocols in cryptocurrencies 19 2.1 Design goals for a cryptocurrency P2P network.............. 19 2.2 P2P protocols in cryptocurrencies...................... 20 2.2.1 Bitcoin P2P protocol......................... 20 2.2.2 Dandelion............................... 21 2.3 Taxonomy of nodes.............................. 22 2.4 Network-level privacy in cryptocurrencies................ 23 2.4.1 Network-based transaction deanonymization.......... 23 3 Deanonymization of transactions with network analysis 27 3.1 Transaction clustering with timing analysis................ 27 3.1.1 Weight functions and clustering.................. 28 3.1.2 Measuring clustering quality.................... 30 3.1.3 Measuring the degree of deanonymization............ 30 3.2 Implementation details............................ 31 3.3 Experimental evaluation........................... 32 3.3.1 Results for desktop wallets..................... 33 3.3.1.1 Bitcoin testnet....................... 34 3.3.1.2 Bitcoin mainnet...................... 35 3.3.1.3 Zcash............................ 36 3.3.1.4 Dash............................. 37 x 3.3.1.5 Monero........................... 37 3.3.2 Results for mobile wallets...................... 39 3.4 Attack cost estimation............................ 42 3.5 Discussion and countermeasures...................... 42 3.6 Conclusion................................... 44 4 Privacy of cryptocurrency wallets 45 4.1 Minimal privacy criteria........................... 45 4.2 Analysis of selected wallets......................... 46 4.2.1 Manual inspection.......................... 47 4.2.2 Static analysis............................. 50 4.3 Conclusion................................... 52 II Privacy of the Lightning Network 53 5 Introduction to Lightning Network 55 5.1 Evolution of payment channels in Bitcoin................. 55 5.1.1 Transaction replacement with sequence numbers........ 55 5.1.2 Unidirectional channels....................... 56 5.1.3 Replace-by-timelock and Duplex channels............ 56 5.1.4 Poon-Dryja channels (Lightning).................. 57 5.2 Lightning Network architecture....................... 58 5.2.1 Nodes................................. 58 5.2.2 Channels................................ 58 5.2.3 P2P network and path-finding................... 61 5.2.4 The future of Lightning....................... 61 5.3 Research directions in payment channel networks............ 62 6 Probing Lightning channel balances 63 6.1 Probing algorithm............................... 63 6.1.1 Overview..............................
Recommended publications
  • White Paper of Bitcoin Ultimatum Introduction
    White Paper of Bitcoin Ultimatum Introduction 1. Problematic of the Blockchain 4. Bitcoin Ultimatum Architecture industry 4.1. Network working principle 1.1. Transactions Anonymity 4.1.1. Main Transaction Types 1.2. Insufficient Development of Key Aspects of the 4.1.1.1. Public transactions Technology 4.1.1.2. Private transactions 1.3. Centralization 4.1.2. Masternode Network 1.4. Mining pools and commission manipulation 4.2. How to become a validator or masternode in 1.5. Decrease in Transaction Speeds BTCU 4.3. Network Scaling Principle 2. BTCU main solutions and concepts 4.4. Masternodes and Validators Ranking System 4.5. Smart Contracts 2.1. Consensus algorithm basis 4.6. Anonymization principle 2.2. Leasing and Staking 4.7. Staking and Leasing 2.3. Projects tokenization and DeFi 4.7.1. Staking 2.4. Transactions Privacy 4.7.2. Leasing 2.5. Atomic Swaps 4.7.2 Multileasing 4.8. BTCU Technical Specifications 3. Executive Summary 4.8.1. Project Stack 4.8.2. Private key generation algorithm 5. Bitcoin Ultimatum Economy 5.1. Initial Supply and Airdrop 5.2. Leasing Economy 5.3. Masternodes and Validators Commission 5.4. Transactions Fee 6. Project Roadmap 7. Legal Introduction The cryptocurrency market is inextricably tied to the blockchain – its fundamental and underlying technology. The modern market is brimming with an abundance of blockchain protocols, algorithms, and concepts, all of which have fostered the development of a wide variety of services and applications. The modern blockchain market offers users an alternative to both established financial systems and ecosystems/infrastructures of applications and services.
    [Show full text]
  • On the Relationship of Cryptocurrency Price with US Stock and Gold Price Using Copula Models
    mathematics Article On the Relationship of Cryptocurrency Price with US Stock and Gold Price Using Copula Models Jong-Min Kim 1 , Seong-Tae Kim 2 and Sangjin Kim 3,* 1 Statistics Discipline, University of Minnesota at Morris, Morris, MN 56267, USA; [email protected] 2 Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411, USA; [email protected] 3 Department of Management and Information Systems, Dong-A University, Busan 49236, Korea * Correspondence: [email protected] Received: 15 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: This paper examines the relationship of the leading financial assets, Bitcoin, Gold, and S&P 500 with GARCH-Dynamic Conditional Correlation (DCC), Nonlinear Asymmetric GARCH DCC (NA-DCC), Gaussian copula-based GARCH-DCC (GC-DCC), and Gaussian copula-based Nonlinear Asymmetric-DCC (GCNA-DCC). Under the high volatility financial situation such as the COVID-19 pandemic occurrence, there exist a computation difficulty to use the traditional DCC method to the selected cryptocurrencies. To solve this limitation, GC-DCC and GCNA-DCC are applied to investigate the time-varying relationship among Bitcoin, Gold, and S&P 500. In terms of log-likelihood, we show that GC-DCC and GCNA-DCC are better models than DCC and NA-DCC to show relationship of Bitcoin with Gold and S&P 500. We also consider the relationships among time-varying conditional correlation with Bitcoin volatility, and S&P 500 volatility by a Gaussian Copula Marginal Regression (GCMR) model. The empirical findings show that S&P 500 and Gold price are statistically significant to Bitcoin in terms of log-return and volatility.
    [Show full text]
  • IFRS: Accounting for Crypto-Assets
    IFRS (#) Accounting for crypto-assets Contents 1. Introduction 1 2. What are crypto-assets? 2 2.1. Cryptocurrencies 3 2.2. Tokens (crypto-assets other than cryptocurrencies) 5 3. Accounting for crypto-assets 10 3.1. Selected activities of standard setters 10 3.2. Special situations 13 3.3. Conclusion 15 4. Supporting details 16 5. Contacts 21 1 Introduction Crypto-assets experienced a breakout year in 2017. Cryptocurrencies, such as bitcoin and ether, have seen their prices surge as the public’s YoYj]f]kk`Ykaf[j]Yk]\$Yf\ÕfYf[aYdeYjc]lhYjla[ahYflk`Yn]l`mk af[j]Ykaf_dqlmjf]\l`]ajYll]flagflgl`]h`]fge]fgf&KaemdlYf]gmkdq$ a wave of new crypto-asset issuance has been sweeping the start-up fundraising world, sparking the interest of regulators in the process. 9[[gmflYflk`Yn]l`mk^YjZ]]ffglYZd]Zql`]ajj]dYlan]YZk]f[]^jge l`YlfYjjYlan]&H]j`Yhk$egklfglYZd]akl`]^Y[ll`Yll`]9mkljYdaYf 9[[gmflaf_KlYf\Yj\k:gYj\ 99K:!`YkkmZeall]\Y\ak[mkkagfhYh]j gfÉ\a_alYd[mjj]f[a]kÊlgl`]Afl]jfYlagfYd9[[gmflaf_KlYf\Yj\k :gYj\ A9K:!$Yf\l`]9[[gmflaf_KlYf\Yj\k:gYj\g^BYhYf 9K:B! `Ykakkm]\Yf]phgkmj]\jY^l^gjhmZda[[gee]flgfY[[gmflaf_^gj “virtual currencies”.1AfY\\alagf$l`]A9K:\ak[mkk]\[]jlYaf^]Ylmj]kg^ ljYfkY[lagfkafngdnaf_\a_alYd[mjj]f[a]k\mjaf_alke]]laf_afBYfmYjq *()0$Yf\oadd\ak[mkkaf^mlmj]o`]l`]jlg[gee]f[]Yj]k]Yj[`hjgb][l in this area.1 L`akYdkg`a_`da_`lkl`]dY[cg^YklYf\Yj\ar]\[jqhlg%Ykk]llYpgfgeq$ o`a[`eYc]kal\a^Õ[mdllg\]l]jeaf]l`]Yhhda[YZadalqg^klYf\Yj\k]ll]jkÌ hmZdak`]\h]jkh][lan]k&>mjl`]jegj]$\m]lgl`]\an]jkalqYf\hY[]g^ affgnYlagfYkkg[aYl]\oal`[jqhlg%Ykk]lk$l`]^Y[lkYf\[aj[meklYf[]k g^]Y[`af\ana\mYd[Yk]oadd\a^^]j$eYcaf_al\a^Õ[mdllg\jYo_]f]jYd [gf[dmkagfkgfl`]Y[[gmflaf_lj]Yle]fl& <]khal]l`]eYjc]lÌkaf[j]Ykaf_dqmj_]flf]]\^gjY[[gmflaf__ma\Yf[]$ l`]j]`Yn]Z]]ffg^gjeYdhjgfgmf[]e]flkgfl`aklgha[lg\Yl]& Afl`akj]hgjl$o]YaelgÕjklZja]Öqafljg\m[][jqhlg[mjj]f[a]kYf\ gl`]jlqh]kg^[jqhlg%Ykk]lk&L`]f$o]\ak[mkkkge]g^l`]j][]fl activities by accounting standard setters in relation to crypto-assets.
    [Show full text]
  • Banking on Bitcoin: BTC As Collateral
    Banking on Bitcoin: BTC as Collateral Arcane Research Bitstamp Arcane Research is a part of Arcane Crypto, Bitstamp is the world’s longest-running bringing data-driven analysis and research cryptocurrency exchange, supporting to the cryptocurrency space. After launch in investors, traders and leading financial August 2019, Arcane Research has become institutions since 2011. With a proven track a trusted brand, helping clients strengthen record, cutting-edge market infrastructure their credibility and visibility through and dedication to personal service with a research reports and analysis. In addition, human touch, Bitstamp’s secure and reliable we regularly publish reports, weekly market trading venue is trusted by over four million updates and articles to educate and share customers worldwide. Whether it’s through insights. their intuitive web platform and mobile app or industry-leading APIs, Bitstamp is where crypto enters the world of finance. For more information, visit www.bitstamp.net 2 Banking on Bitcoin: BTC as Collateral Banking on bitcoin The case for bitcoin as collateral The value of the global market for collateral is estimated to be close to $20 trillion in assets. Government bonds and cash-based securities alike are currently the most important parts of a well- functioning collateral market. However, in that, there is a growing weakness as rehypothecation creates a systemic risk in the financial system as a whole. The increasing reuse of collateral makes these assets far from risk-free and shows the potential instability of the financial markets and that it is more fragile than many would like to admit. Bitcoin could become an important part of the solution and challenge the dominating collateral assets in the future.
    [Show full text]
  • Blockchain Law: the Fork Not Taken
    Blockchain Law The fork not taken Robert A. Schwinger, New York Law Journal — November 24, 2020 I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference. — Robert Frost Is the token holder — often the holder of some form of digital currency — always free to choose which branch of the fork to take? A blockchain is often envisioned as a record of a single continuous Background: ‘Two roads diverged in a sequential series of transactions, like the links of the metaphorical chain from which the term “blockchain” derives. But sometimes yellow wood’ the chain turns out to be not so single or continuous. Sometimes situations can arise where a portion of the chain can branch off A blockchain fork occurs when someone seeks to divide a into a new direction from the original chain, while the original chain blockchain into two branches by changing its source code, which also continues to move forward separately. This presents a choice is possible to do because the code is open. For those users who for the current holders of the digital tokens on that blockchain choose to upgrade their software, the software then “rejects about which direction they wish to follow going forward. In the all transactions from older software, effectively creating a new world of blockchain, this scenario is termed a “fork.” branch of the blockchain. However, those users who retain the old software continue to process transactions, meaning that But is the tokenholder—often the holder of some form of digital there is a parallel set of transactions taking place across two currency—always free to choose which branch of the fork to different chains.” See generally N.
    [Show full text]
  • Consent Order: HDR Global Trading Limited, Et Al
    Case 1:20-cv-08132-MKV Document 62 Filed 08/10/21 Page 1 of 22 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK USDC SDNY DOCUMENT ELECTRONICALLY FILED COMMODITY FUTURES TRADING DOC #: COMMISSION, DATE FILED: 8/10/2021 Plaintiff v. Case No. 1:20-cv-08132 HDR GLOBAL TRADING LIMITED, 100x Hon. Mary Kay Vyskocil HOLDINGS LIMITED, ABS GLOBAL TRADING LIMITED, SHINE EFFORT INC LIMITED, HDR GLOBAL SERVICES (BERMUDA) LIMITED, ARTHUR HAYES, BENJAMIN DELO, and SAMUEL REED, Defendants CONSENT ORDER FOR PERMANENT INJUNCTION, CIVIL MONETARY PENALTY, AND OTHER EQUITABLE RELIEF AGAINST DEFENDANTS HDR GLOBAL TRADING LIMITED, 100x HOLDINGS LIMITED, SHINE EFFORT INC LIMITED, and HDR GLOBAL SERVICES (BERMUDA) LIMITED I. INTRODUCTION On October 1, 2020, Plaintiff Commodity Futures Trading Commission (“Commission” or “CFTC”) filed a Complaint against Defendants HDR Global Trading Limited (“HDR”), 100x Holdings Limited (100x”), ABS Global Trading Limited (“ABS”), Shine Effort Inc Limited (“Shine”), and HDR Global Services (Bermuda) Limited (“HDR Services”), all doing business as “BitMEX” (collectively “BitMEX”) as well as BitMEX’s co-founders Arthur Hayes (“Hayes”), Benjamin Delo (“Delo”), and Samuel Reed (“Reed”), (collectively “Defendants”), seeking injunctive and other equitable relief, as well as the imposition of civil penalties, for violations of the Commodity Exchange Act (“Act”), 7 U.S.C. §§ 1–26 (2018), and the Case 1:20-cv-08132-MKV Document 62 Filed 08/10/21 Page 2 of 22 Commission’s Regulations (“Regulations”) promulgated thereunder, 17 C.F.R. pts. 1–190 (2020). (“Complaint,” ECF No. 1.)1 II. CONSENTS AND AGREEMENTS To effect settlement of all charges alleged in the Complaint against Defendants HDR, 100x, ABS, Shine, and HDR Services (“Settling Defendants”) without a trial on the merits or any further judicial proceedings, Settling Defendants: 1.
    [Show full text]
  • The Lightning Network 25 January 2018
    The Lightning Network 25 January 2018 BitMEX Research Filtering out the hype with unbiased, evidence-based reports on the crypto-coin ecosystem. BitMEX Research is also active on Twitter and Reddit. research.bitmex.com (Source: Flickr) Abstract Previous reports: In this piece, we explain the motivation behind the creation of the Mining Incentives, Part 3: Short Term vs. Long Term Lightning Network and why its scaling characteristics are superior to what (17/01/2018) we have today, potentially resulting in a transformational improvement. A Complete History of Bitcoin’s Consensus Forks We describe some of the basic technical building blocks that make (28/12/2017) Lightning possible. We then examine some of its limitations, including the Bitcoin Gold: Investment Flow downsides of inferior security compared to transacting on-chain and why Data (21/12/2017) this makes Lightning potentially unsuitable for larger-value payments. Public Companies with Exposure to the Crypto Space (13/12/2017) Update: Bitcoin Cash Investment Flow Data (01/12/2017) Research – The Lightning Network 25 January 2018 1 The motivation behind the Lightning Network Blockchain-based payment systems typically work in a “broadcast to everyone” mode, in that when one makes a payment, one needs to broadcast the transaction to all participants in the network. Nodes in such a system must: • Store the transaction indefinitely, • Verify the transaction, and • Relay the transaction. Miners, meanwhile, are required to engage in an energy-intensive competitive process to determine if the transaction makes it into the ledger, just in case a conflicting transaction occurs. There isn’t even special treatment for the recipient of the payment.
    [Show full text]
  • Aggregate Cash System: a Cryptographic Investigation Of
    Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble Georg Fuchsbauer1,2, Michele Orrù2,1, and Yannick Seurin3 1 Inria 2 École normale supérieure, CNRS, PSL University, Paris, France 3 ANSSI, Paris, France {georg.fuchsbauer, michele.orru}@ens.fr [email protected] Abstract. Mimblewimble is an electronic cash system proposed by an anonymous author in 2016. It combines several privacy-enhancing techniques initially envisioned for Bitcoin, such as Confidential Transactions (Maxwell, 2015), non-interactive merging of transactions (Saxena, Misra, Dhar, 2014), and cut-through of transaction inputs and outputs (Maxwell, 2013). As a remarkable consequence, coins can be deleted once they have been spent while maintaining public verifiability of the ledger, which is not possible in Bitcoin. This results in tremendous space savings for the ledger and efficiency gains for new users, who must verify their view of the system. In this paper, we provide a provable-security analysis for Mimblewimble. We give a precise syntax and formal security definitions for an abstraction of Mimblewimble that we call an aggregate cash system. We then formally prove the security of Mimblewimble in this definitional framework. Our results imply in particular that two natural instantiations (with Pedersen commitments and Schnorr or BLS signatures) are provably secure against inflation and coin theft under standard assumptions. Keywords: Mimblewimble, Bitcoin, commitments, aggregate signatures. 1 Introduction Bitcoin and the UTXO model. Proposed in 2008 and launched early 2009, Bitcoin [Nak08] is a decentralized payment system in which transactions are registered in a distributed and publicly verifiable ledger called a blockchain. Bitcoin departs from traditional account-based payment systems where transactions specify an amount moving from one account to another.
    [Show full text]
  • Short Selling Attack: a Self-Destructive but Profitable 51% Attack on Pos Blockchains
    Short Selling Attack: A Self-Destructive But Profitable 51% Attack On PoS Blockchains Suhyeon Lee and Seungjoo Kim CIST (Center for Information Security Technologies), Korea University, Korea Abstract—There have been several 51% attacks on Proof-of- With a PoS, the attacker needs to obtain 51% of the Work (PoW) blockchains recently, including Verge and Game- cryptocurrency to carry out a 51% attack. But unlike PoW, Credits, but the most noteworthy has been the attack that saw attacker in a PoS system is highly discouraged from launching hackers make off with up to $18 million after a successful double spend was executed on the Bitcoin Gold network. For this reason, 51% attack because he would have to risk of depreciation the Proof-of-Stake (PoS) algorithm, which already has advantages of his entire stake amount to do so. In comparison, bad of energy efficiency and throughput, is attracting attention as an actor in a PoW system will not lose their expensive alternative to the PoW algorithm. With a PoS, the attacker needs mining equipment if he launch a 51% attack. Moreover, to obtain 51% of the cryptocurrency to carry out a 51% attack. even if a 51% attack succeeds, the value of PoS-based But unlike PoW, attacker in a PoS system is highly discouraged from launching 51% attack because he would have to risk losing cryptocurrency will fall, and the attacker with the most stake his entire stake amount to do so. Moreover, even if a 51% attack will eventually lose the most. For these reasons, those who succeeds, the value of PoS-based cryptocurrency will fall, and attempt to attack 51% of the PoS blockchain will not be the attacker with the most stake will eventually lose the most.
    [Show full text]
  • Review Articles
    review articles DOI:10.1145/3372115 system is designed to achieve common Software weaknesses in cryptocurrencies security goals: transaction integrity and availability in a highly distributed sys- create unique challenges in responsible tem whose participants are incentiv- revelations. ized to cooperate.38 Users interact with the cryptocurrency system via software BY RAINER BÖHME, LISA ECKEY, TYLER MOORE, “wallets” that manage the cryptograph- NEHA NARULA, TIM RUFFING, AND AVIV ZOHAR ic keys associated with the coins of the user. These wallets can reside on a local client machine or be managed by an online service provider. In these appli- cations, authenticating users and Responsible maintaining confidentiality of crypto- graphic key material are the central se- curity goals. Exchanges facilitate trade Vulnerability between cryptocurrencies and between cryptocurrencies and traditional forms of money. Wallets broadcast cryptocur- Disclosure in rency transactions to a network of nodes, which then relay transactions to miners, who in turn validate and group Cryptocurrencies them together into blocks that are ap- pended to the blockchain. Not all cryptocurrency applications revolve around payments. Some crypto- currencies, most notably Ethereum, support “smart contracts” in which general-purpose code can be executed with integrity assurances and recorded DESPITE THE FOCUS on operating in adversarial on the distributed ledger. An explosion of token systems has appeared, in environments, cryptocurrencies have suffered a litany which particular functionality is ex- of security and privacy problems. Sometimes, these pressed and run on top of a cryptocur- rency.12 Here, the promise is that busi- issues are resolved without much fanfare following ness logic can be specified in the smart a disclosure by the individual who found the hole.
    [Show full text]
  • Bitmex Xbt Price on Spreadsheet
    Bitmex Xbt Price On Spreadsheet Follow-up Barty sometimes enounces his Beaulieu stalwartly and configure so apologetically! If unteachable or goadSolutrean her Stafford Troy usually insufferably, risks his Salopian roneos prickle and uniplanar. amok or solemnized proximo and farther, how piniest is Zeb? Uli BitMEX Topics covered in Lesson 2 Cash an Carry. Bitmex Bans Its sister Country Trustnodes. Bitmex XBTUSD historical price data order books and OHLCV candlesticks. American authorities police criminal charges on Thursday against the owners of kiss of surgery world's biggest cryptocurrency trading exchanges BitMEX accusing them of allowing the Hong Kong-based company to launder money and engage in other illegal transactions. This call does return Bitcoin traded volume in XBT over since last 24h on Kraken. The Calculator can show his current ProfitLoss PnL Target prices at set. 6 July 2019 AntiLiquidation is a BitMEX Anti-Liquidation Tool Position Calculator. 24 Hours BitMex Liquidation Data of XBTUSD ETHUSD and All Supported Asset. BTC USD Bitfinex Historical Data Investingcom. It is Buyer's move bitcoin analysis price bitmex inverse contract process are playing. For market trades fees are 0075 of your stop for both entry exit So total fees on a 1000 trade with 100x leverage are 150 100 x 1000 x 000075 x 2 Fees are 15 in industry case. Bitcoin Price Bitmex and Coinbase Trading News Value of Wallet Bitcoin. In a dramatic day for Bitcoin BTC bulls pushed the price of BitMEX's XBT. Demo Binance Huobi Bitmex And Others In Spreadsheet Using Api Excel. The price on an ma in any such levels indicator would come under cftc.
    [Show full text]
  • The Bitcoin Trading Ecosystem
    ArcaneReport(PrintReady).qxp 21/07/2021 14:43 Page 1 THE INSTITUTIONAL CRYPTO CURRENCY EXCHANGE INSIDE FRONT COVER: BLANK ArcaneReport(PrintReady).qxp 21/07/2021 14:43 Page 3 The Bitcoin Trading Ecosystem Arcane Research LMAX Digital Arcane Research is a part of Arcane Crypto, bringing LMAX Digital is the leading institutional spot data-driven analysis and research to the cryptocurrency exchange, run by the LMAX Group, cryptocurrency space. After launch in August 2019, which also operates several leading FCA regulated Arcane Research has become a trusted brand, trading venues for FX, metals and indices. Based on helping clients strengthen their credibility and proven, proprietary technology from LMAX Group, visibility through research reports and analysis. In LMAX Digital allows global institutions to acquire, addition, we regularly publish reports, weekly market trade and hold the most liquid digital assets, Bitcoin, updates and articles to educate and share insights. Ethereum, Litecoin, Bitcoin Cash and XRP, safely and securely. Arcane Crypto develops and invests in projects, focusing on bitcoin and digital assets. Arcane Trading with all the largest institutions globally, operates a portfolio of businesses, spanning the LMAX Digital is a primary price discovery venue, value chain for digital nance. As a group, Arcane streaming real-time market data to the industry’s deliver services targeting payments, investment, and leading indices and analytics platforms, enhancing trading, in addition to a media and research leg. the quality of market information available to investors and enabling a credible overview of the Arcane has the ambition to become a leading player spot crypto currency market. in the digital assets space by growing the existing businesses, invest in cutting edge projects, and LMAX Digital is regulated by the Gibraltar Financial through acquisitions and consolidation.
    [Show full text]