Trigonometry Review with the Unit Circle: All the Trig. You'll Ever Need

Total Page:16

File Type:pdf, Size:1020Kb

Trigonometry Review with the Unit Circle: All the Trig. You'll Ever Need Trigonometry Review with the Unit Circle: All the trig. you’ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs: domain, range and transformations. Angle Measure Angles can be measured in 2 ways, in degrees or in radians. The following picture shows the relationship between the two measurements for the most frequently used angles. Notice, degrees will always have the degree symbol above their measure, as in “452° ”, whereas radians are real number without any dimensions, so the number “5” without any symbol represents an angle of 5 radians. An angle is made up of an initial side (positioned on the positive x-axis) and a terminal side (where the angle lands). It is useful to note the quadrant where the terminal side falls. Rotation direction Positive angles start on the positive x-axis and rotate counterclockwise. Negative angles start on the positive x-axis, also, and rotate clockwise. Conversion between radians and degrees when radians are given in terms of “ π ” π DEGREES Æ RADIANS: The official formula is θθD ⋅=radians 180D π 2π Ex. Convert 120D into radians Æ SOLUTION: 120D ⋅= radians 180D 3 180D RADIANS Æ DEGREES: The conversion formula is θ radians⋅ = θ D π π π 180DD 180 Ex. Convert into degrees. Æ SOLUTION: ⋅==36D 5 55π For your own reference, 1 radian≈ 57.30D A radian is defined by the radius of a circle. If you measure off the radius of the circle, then take the straight radius and curved it along the edge of the circle, the angle this arc marks off measures 1 radian. Arc length: when using radians you can determine the arc length of the intercepted arc using this formula: Arc length = (radius) (degree measure in radians) OR sr= θ There may be times you’ll use variations of this formula. Ex. Find the length of the arc pictured here: SOLUTION: s= rθ Æ you know the values of r and θ 525π π s =⋅5 = units for the arc length. 44 The Trigonometric Ratios The six trigonometric ratios are defined in the following way based on this right triangle and the angle θ adj. = adjacent side to angle θ opp. = opposite side to angle θ hyp. = hypotenuse of the right triangle opp. adj. opp. SOH CAH TOA Æ sinθ = cosθ = tanθ = hyp. hyp. adj. hyp. hyp. adj. Reciprocal functions Æ cscθ = secθ = cotθ = opp. adj. opp. Ex. Find the exact values of all 6 trigonometric functions of the angle θ shown in the figure. SOLUTION: first you’ll need to determine the 3rd side using ab22+ = c2 Æ a22+=5132 Æ a =12 So for the angle labeled θ , ADJACENT = 12, OPPOSITE = 5 and HYPOTENUSE = 13 opp 5 adj 12 opp 5 sinθ == cosθ == tanθ == hyp 13 hyp 13 adj 12 hyp 13 hyp 13 adj 12 cscθ == secθ == cotθ = = opp 5 adj 12 opp 5 Special Angles The following triangles will help you to memorize the trig functions of these special angles π π π 30D = 60D = 45D = 6 3 4 If the triangles are not your preferred way of memorizing exact trig. ratios, then use this table. θ D θ RAD sinθ cosθ tanθ cscθ secθ cotθ π 1 3 3 23 D 2 30 6 2 2 3 3 3 π 2 2 D 1 1 45 4 2 2 2 2 π 1 3 23 3 D 2 60 3 2 2 3 3 3 … but even better than this is the unit circle. The trig. ratios are defined as … sinty= cost = x y tant = , x ≠ 0 x 1 csct = , y ≠ 0 y 1 sect = , x ≠ 0 x x cot t = , y ≠ 0 y Domain and Period of Sine and Cosine Considering the trigonometric ratios as functions where the INPUT values of t come from values (angles) on the unit circle, then you can say the domain of these functions would be all real numbers. Domain of Sine and Cosine: All real numbers Based on the way the domain values can start to “cycle” back over the same points to produce the same OUTPUT over and over again, the range is said be periodic. But still, the largest value that sine and cosine OUTPUT on the unit circle is the value of 1, the lowest value of OUTPUT is –1. Range of Sine and Cosine: [– 1 , 1] Since the real line can wrap around the unit circle an infinite number of times, we can extend the domain values of t outside the interval [,02 π]. As the line wraps around further, certain points will overlap on the same (,)x y coordinates on the unit circle. Specifically for the functions sine and cosine, for any value sint and cost if we add 2π to t we end up at the same (,)x y point on the unit circle. Thus sin(tn+⋅2π) = sin t and cos(tn+ ⋅2π )= cos t for any integer n multiple of 2π . These cyclic natures of the sine and cosine functions make them periodic functions. Graphs of Sine and Cosine Below is a table of values, similar to the tables we’ve used before. We’re going to start thinking of how to get the graphs of the functions y= sin x and yx= cos . x 0 π π π π 3π π 3π 2π 6 4 3 2 4 2 yx= sin 0 0.5 2 3 1 2 0 –1 0 2 ≈ 0. 7071 2 ≈ 08660. 2 ≈ 0. 7071 yx= cos 1 3 2 0.5 0 2 –1 0 1 2 ≈ 08660. 2 ≈ 0. 7071 −≈−2 0. 7071 Now, if you plot these y-values over the x-values we have from the unwrapped unit circle, we get these graphs. One very misleading fact about these pictures is the domain of the function … remember that the functions of sine and cosine are periodic and they exist for input outside the interval [0,2π ] . The domain of these functions is all real numbers and these graphs continue to the left and right in the same sinusoidal pattern. The range is [1,1]− . Amplitude When the sine or cosine function has a coefficient in front, such as the value of a in the equation ya= sin x or ya= cos x , this causes the graph to stretch or shrink its y-values. This is referred to as the amplitude. Ex. Compare the graphs of 1 y = cos x y = 2cosx y= 2 cos x y =−2cosx amplitude = 1 amplitude = 2 amplitude = ½ amplitude = 2 with reflection in x-axis Amplitude is an absolute value quantity. When the coefficient is negative, this causes an x-axis reflection. Period If there is a coefficient within the argument in front of the x , this will change the length of the function’s period. The usual cycle for sine and cosine is on the interval 0≤ x ≤ 2π , but here’s how this can change … Æ Let b be a positive real number. The period of ya= sin bx and ya= cos bx is found this way: 2π 0≤≤bx 2π Æ divide by b Æ 0 ≤≤x b NOTE: If b > 1, this will cause the graph to shrink horizontally because the period will be less than 2π . If 0<<b 1, the graph will stretch horizontally making the period greater than 2π . You’ll need to adjust the key points of the graph when the period changes! Key points are found by dividing the period length into 4 increments. 1 Ex. Sketch a graph of y= 2sin(4 x) by hand. SOLUTION: The coefficient a = 2 will effect the range of the graph. The amplitude is 2. Now the period is determined by taking the argument expression inside the function and solving this inequality … 1 0≤≤x 2π Æ multiply by 4 on all sides Æ 08≤ x ≤ π 4 You should divide the interval 08≤≤x π into 4 equal increments. Ex. Sketch the graph of yx=−8cos(10 ). SOLUTION: The amplitude here is 8. The negative sign means the graph of cosine will be reflected in the x-axis. The period for the graph will be π Æ 0102≤ x ≤ π Æ 0 ≤≤x 5 The period here is so much smaller than usual, when you graph it on the calculator, it looks too narrow. You’ll need to scale the graph down so you can get an accurate picture of the wave. One full period of this graph is shown in red above. Don’t forget, just because you’re only graphing one full cycle of the function doesn’t mean it “stops” there … these graphs continue on in a periodic motion. Translations or Phase Shift For the equation ya=+sin( bxc ) and ya=cos( bxc+ ) you can determine the “phase shift” in a way similar to determining the period of the function. −cc2π − Set up an inequality Æ 0≤+≤bx c 2π Æ solve for x Æ ≤≤x bb This new interval represents where the usual cycle for the sine or cosine graph gets shifted to on the x-axis. π Ex. Sketch the function yx=+0.25cos()4 . SOLUTION: Amplitude = 0.25, Period = 2π , now determine the phase shift interval. π π π π π 7π 0≤+≤x 4 2π Æ subtract 4 Æ −≤≤44x 2π − Æ − 44≤≤x π 7π So, one full cycle of this function’s graph will be on the interval − 44≤≤x . After you determine the interval for the phase shift, I recommend labeling the x-axis first with all the critical points.
Recommended publications
  • Refresher Course Content
    Calculus I Refresher Course Content 4. Exponential and Logarithmic Functions Section 4.1: Exponential Functions Section 4.2: Logarithmic Functions Section 4.3: Properties of Logarithms Section 4.4: Exponential and Logarithmic Equations Section 4.5: Exponential Growth and Decay; Modeling Data 5. Trigonometric Functions Section 5.1: Angles and Radian Measure Section 5.2: Right Triangle Trigonometry Section 5.3: Trigonometric Functions of Any Angle Section 5.4: Trigonometric Functions of Real Numbers; Periodic Functions Section 5.5: Graphs of Sine and Cosine Functions Section 5.6: Graphs of Other Trigonometric Functions Section 5.7: Inverse Trigonometric Functions Section 5.8: Applications of Trigonometric Functions 6. Analytic Trigonometry Section 6.1: Verifying Trigonometric Identities Section 6.2: Sum and Difference Formulas Section 6.3: Double-Angle, Power-Reducing, and Half-Angle Formulas Section 6.4: Product-to-Sum and Sum-to-Product Formulas Section 6.5: Trigonometric Equations 7. Additional Topics in Trigonometry Section 7.1: The Law of Sines Section 7.2: The Law of Cosines Section 7.3: Polar Coordinates Section 7.4: Graphs of Polar Equations Section 7.5: Complex Numbers in Polar Form; DeMoivre’s Theorem Section 7.6: Vectors Section 7.7: The Dot Product 8. Systems of Equations and Inequalities (partially included) Section 8.1: Systems of Linear Equations in Two Variables Section 8.2: Systems of Linear Equations in Three Variables Section 8.3: Partial Fractions Section 8.4: Systems of Nonlinear Equations in Two Variables Section 8.5: Systems of Inequalities Section 8.6: Linear Programming 10. Conic Sections and Analytic Geometry (partially included) Section 10.1: The Ellipse Section 10.2: The Hyperbola Section 10.3: The Parabola Section 10.4: Rotation of Axes Section 10.5: Parametric Equations Section 10.6: Conic Sections in Polar Coordinates 11.
    [Show full text]
  • Algebra/Geometry/Trigonometry App Samples
    Algebra/Geometry/Trigonometry App Samples Holt McDougal Algebra 1 HMH Fuse: Algebra 1- HMH Fuse is the first core K-12 education solution developed exclusively for the iPad. The portability of a complete classroom course on an iPad enables students to learn in the classroom, on the bus, or at home—anytime, anywhere—with engaging content that provides an individually-tailored learning experience. Students and educators using HMH Fuse: will benefit from: •Instructional videos that teach or re-teach all key concepts •Math Motion is a step-by-step interactive demonstration that displays the process to solve complex equations •Homework Help provides at-home support for intricate problems by providing hints for each step in the solution •Vocabulary support throughout with links to a complete glossary that includes audio definitions •Tips, hints, and links that enable students to acquire the help they need to understand the lessons every step of the way •Quizzes that assess student’s skills before they begin a concept and at strategic points throughout the chapters. Instant, automatic grading of quizzes lets students know exactly how they have performed •Immediate assessment results sent to teachers so they can better differentiate instruction. Sample- Cost is Free, Complete App price- $59.99 Holt McDougal HMH Fuse: Geometry- Following our popular HMH Fuse: Algebra 1 app, HMH Fuse: Geometry is the newest offering in the HMH Fuse series. HMH Fuse: Geometry will allow you a sneak peek at the future of mobile geometry curriculum and includes a FREE sample chapter. HMH Fuse is the first core K-12 education solution developed exclusively for the iPad.
    [Show full text]
  • Trigonometric Functions
    Trigonometric Functions This worksheet covers the basic characteristics of the sine, cosine, tangent, cotangent, secant, and cosecant trigonometric functions. Sine Function: f(x) = sin (x) • Graph • Domain: all real numbers • Range: [-1 , 1] • Period = 2π • x intercepts: x = kπ , where k is an integer. • y intercepts: y = 0 • Maximum points: (π/2 + 2kπ, 1), where k is an integer. • Minimum points: (3π/2 + 2kπ, -1), where k is an integer. • Symmetry: since sin (–x) = –sin (x) then sin(x) is an odd function and its graph is symmetric with respect to the origin (0, 0). • Intervals of increase/decrease: over one period and from 0 to 2π, sin (x) is increasing on the intervals (0, π/2) and (3π/2 , 2π), and decreasing on the interval (π/2 , 3π/2). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Cosine Function: f(x) = cos (x) • Graph • Domain: all real numbers • Range: [–1 , 1] • Period = 2π • x intercepts: x = π/2 + k π , where k is an integer. • y intercepts: y = 1 • Maximum points: (2 k π , 1) , where k is an integer. • Minimum points: (π + 2 k π , –1) , where k is an integer. • Symmetry: since cos(–x) = cos(x) then cos (x) is an even function and its graph is symmetric with respect to the y axis. • Intervals of increase/decrease: over one period and from 0 to 2π, cos (x) is decreasing on (0 , π) increasing on (π , 2π). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Tangent Function : f(x) = tan (x) • Graph • Domain: all real numbers except π/2 + k π, k is an integer.
    [Show full text]
  • Lecture 5: Complex Logarithm and Trigonometric Functions
    LECTURE 5: COMPLEX LOGARITHM AND TRIGONOMETRIC FUNCTIONS Let C∗ = C \{0}. Recall that exp : C → C∗ is surjective (onto), that is, given w ∈ C∗ with w = ρ(cos φ + i sin φ), ρ = |w|, φ = Arg w we have ez = w where z = ln ρ + iφ (ln stands for the real log) Since exponential is not injective (one one) it does not make sense to talk about the inverse of this function. However, we also know that exp : H → C∗ is bijective. So, what is the inverse of this function? Well, that is the logarithm. We start with a general definition Definition 1. For z ∈ C∗ we define log z = ln |z| + i argz. Here ln |z| stands for the real logarithm of |z|. Since argz = Argz + 2kπ, k ∈ Z it follows that log z is not well defined as a function (it is multivalued), which is something we find difficult to handle. It is time for another definition. Definition 2. For z ∈ C∗ the principal value of the logarithm is defined as Log z = ln |z| + i Argz. Thus the connection between the two definitions is Log z + 2kπ = log z for some k ∈ Z. Also note that Log : C∗ → H is well defined (now it is single valued). Remark: We have the following observations to make, (1) If z 6= 0 then eLog z = eln |z|+i Argz = z (What about Log (ez)?). (2) Suppose x is a positive real number then Log x = ln x + i Argx = ln x (for positive real numbers we do not get anything new).
    [Show full text]
  • An Appreciation of Euler's Formula
    Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 1 Article 17 An Appreciation of Euler's Formula Caleb Larson North Dakota State University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Larson, Caleb (2017) "An Appreciation of Euler's Formula," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 1 , Article 17. Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss1/17 Rose- Hulman Undergraduate Mathematics Journal an appreciation of euler's formula Caleb Larson a Volume 18, No. 1, Spring 2017 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 [email protected] a scholar.rose-hulman.edu/rhumj North Dakota State University Rose-Hulman Undergraduate Mathematics Journal Volume 18, No. 1, Spring 2017 an appreciation of euler's formula Caleb Larson Abstract. For many mathematicians, a certain characteristic about an area of mathematics will lure him/her to study that area further. That characteristic might be an interesting conclusion, an intricate implication, or an appreciation of the impact that the area has upon mathematics. The particular area that we will be exploring is Euler's Formula, eix = cos x + i sin x, and as a result, Euler's Identity, eiπ + 1 = 0. Throughout this paper, we will develop an appreciation for Euler's Formula as it combines the seemingly unrelated exponential functions, imaginary numbers, and trigonometric functions into a single formula. To appreciate and further understand Euler's Formula, we will give attention to the individual aspects of the formula, and develop the necessary tools to prove it.
    [Show full text]
  • Unit Circle Trigonometry
    UNIT CIRCLE TRIGONOMETRY The Unit Circle is the circle centered at the origin with radius 1 unit (hence, the “unit” circle). The equation of this circle is xy22+ =1. A diagram of the unit circle is shown below: y xy22+ = 1 1 x -2 -1 1 2 -1 -2 We have previously applied trigonometry to triangles that were drawn with no reference to any coordinate system. Because the radius of the unit circle is 1, we will see that it provides a convenient framework within which we can apply trigonometry to the coordinate plane. Drawing Angles in Standard Position We will first learn how angles are drawn within the coordinate plane. An angle is said to be in standard position if the vertex of the angle is at (0, 0) and the initial side of the angle lies along the positive x-axis. If the angle measure is positive, then the angle has been created by a counterclockwise rotation from the initial to the terminal side. If the angle measure is negative, then the angle has been created by a clockwise rotation from the initial to the terminal side. θ in standard position, where θ is positive: θ in standard position, where θ is negative: y y Terminal side θ Initial side x x Initial side θ Terminal side Unit Circle Trigonometry Drawing Angles in Standard Position Examples The following angles are drawn in standard position: y y 1. θ = 40D 2. θ =160D θ θ x x y 3. θ =−320D Notice that the terminal sides in examples 1 and 3 are in the same position, but they do not represent the same angle (because x the amount and direction of the rotation θ in each is different).
    [Show full text]
  • Developing Creative Thinking in Mathematics: Trigonometry
    Secondary Mathematics Developing creative thinking in mathematics: trigonometry Teacher Education through School-based Support in India www.TESS-India.edu.in http://creativecommons.org/licenses/ TESS-India (Teacher Education through School-based Support) aims to improve the classroom practices of elementary and secondary teachers in India through the provision of Open Educational Resources (OERs) to support teachers in developing student-centred, participatory approaches. The TESS-India OERs provide teachers with a companion to the school textbook. They offer activities for teachers to try out in their classrooms with their students, together with case studies showing how other teachers have taught the topic and linked resources to support teachers in developing their lesson plans and subject knowledge. TESS-India OERs have been collaboratively written by Indian and international authors to address Indian curriculum and contexts and are available for online and print use (http://www.tess-india.edu.in/). The OERs are available in several versions, appropriate for each participating Indian state and users are invited to adapt and localise the OERs further to meet local needs and contexts. TESS-India is led by The Open University UK and funded by UK aid from the UK government. Video resources Some of the activities in this unit are accompanied by the following icon: . This indicates that you will find it helpful to view the TESS-India video resources for the specified pedagogic theme. The TESS-India video resources illustrate key pedagogic techniques in a range of classroom contexts in India. We hope they will inspire you to experiment with similar practices. They are intended to complement and enhance your experience of working through the text-based units, but are not integral to them should you be unable to access them.
    [Show full text]
  • Trigonometric Functions
    Hy po e te t n C i u s se o b a p p O θ A c B Adjacent Math 1060 ~ Trigonometry 4 The Six Trigonometric Functions Learning Objectives In this section you will: • Determine the values of the six trigonometric functions from the coordinates of a point on the Unit Circle. • Learn and apply the reciprocal and quotient identities. • Learn and apply the Generalized Reference Angle Theorem. • Find angles that satisfy trigonometric function equations. The Trigonometric Functions In addition to the sine and cosine functions, there are four more. Trigonometric Functions: y Ex 1: Assume � is in this picture. P(cos(�), sin(�)) Find the six trigonometric functions of �. x 1 1 Ex 2: Determine the tangent values for the first quadrant and each of the quadrant angles on this Unit Circle. Reciprocal and Quotient Identities Ex 3: Find the indicated value, if it exists. a) sec 30º b) csc c) cot (2) d) tan �, where � is any angle coterminal with 270 º. e) cos �, where csc � = -2 and < � < . f) sin �, where tan � = and � is in Q III. 2 Generalized Reference Angle Theorem The values of the trigonometric functions of an angle, if they exist, are the same, up to a sign, as the corresponding trigonometric functions of the reference angle. More specifically, if α is the reference angle for θ, then cos θ = ± cos α, sin θ = ± sin α. The sign, + or –, is determined by the quadrant in which the terminal side of θ lies. Ex 4: Determine the reference angle for each of these. Then state the cosine and sine and tangent of each.
    [Show full text]
  • 4.2 – Trigonometric Functions: the Unit Circle
    Warm Up Warm Up 1 The hypotenuse of a 45◦ − 45◦ − 90◦ triangle is 1 unit in length. What is the measure of each of the other two sides of the triangle? 2 The hypotenuse of a 30◦ − 60◦ − 90◦ triangle is 1 unit in length. What is the measure of each of the other two sides of the triangle? Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 1 / 27 4.2 { Trigonometric Functions: The Unit Circle Pre-Calculus Mr. Niedert Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 2 / 27 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 4 Evaluating Trigonometric Functions with a Calculator 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr. Niedert 3 / 27 4.2 { Trigonometric Functions: The Unit Circle 1 The Unit Circle 2 Trigonometric Functions 3 Domain and Period of Sine and Cosine 4 Evaluating Trigonometric Functions with a Calculator Pre-Calculus 4.2 { Trig Func: The Unit Circle Mr.
    [Show full text]
  • Meaning and Understanding of School Mathematical Concepts by Secondary Students: the Study of Sine and Cosine
    EURASIA Journal of Mathematics, Science and Technology Education, 2019, 15(12), em1782 ISSN:1305-8223 (online) OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/110490 Meaning and Understanding of School Mathematical Concepts by Secondary Students: The Study of Sine and Cosine Enrique Martín-Fernández 1*, Juan Francisco Ruiz-Hidalgo 1, Luis Rico 1 1 Department of Mathematics Education, Faculty of Education, University of Granada, Campus Universitario Cartuja s/n, 18011, Granada, SPAIN Received 18 November 2018 ▪ Revised 5 April 2019 ▪ Accepted 12 April 2019 ABSTRACT Meaning and understanding are didactic notions appropriate to work on concept comprehension, curricular design, and knowledge assessment. This document aims to delve into the meaning of school mathematical concepts through their semantic analysis. This analysis is used to identify and establish the basic meaning of a mathematical concept and to value its understanding. To illustrate the study, we have chosen the trigonometric notions of sine and cosine of an angle. The work exemplifies some findings of an exploratory study carried out with high school students between 16 and 17 years of age; it collects the variety of emergent notions and elements related to the trigonometric concepts involved when answering on the categories of meaning which have been asked for. We gather the study data through a semantic questionnaire and analyze the responses using an established framework. The subjects provide a diversity of meanings, interpreted and structured by semantic categories. These meanings underline different understandings of the sine and cosine, according to the inferred themes, such as length, ratio, angle and the calculation of a magnitude.
    [Show full text]
  • Using Differentials to Differentiate Trigonometric and Exponential Functions Tevian Dray
    Using Differentials to Differentiate Trigonometric and Exponential Functions Tevian Dray Tevian Dray ([email protected]) received his B.S. in mathematics from MIT in 1976, his Ph.D. in mathematics from Berkeley in 1981, spent several years as a physics postdoc, and is now a professor of mathematics at Oregon State University. A Fellow of the American Physical Society for his early work in general relativity, his current research interests include the octonions as well as science education. He directs the Vector Calculus Bridge Project. (http://www.math.oregonstate.edu/bridge) Differentiating a polynomial is easy. To differentiate u2 with respect to u, start by computing d.u2/ D .u C du/2 − u2 D 2u du C du2; and then dropping the last term, an operation that can be justified in terms of limits. Differential notation, in general, can be regarded as a shorthand for a formal limit argument. Still more informally, one can argue that du is small compared to u, so that the last term can be ignored at the level of approximation needed. After dropping du2 and dividing by du, one obtains the derivative, namely d.u2/=du D 2u. Even if one regards this process as merely a heuristic procedure, it is a good one, as it always gives the correct answer for a polynomial. (Physicists are particularly good at knowing what approximations are appropriate in a given physical context. A physicist might describe du as being much smaller than the scale imposed by the physical situation, but not so small that quantum mechanics matters.) However, this procedure does not suffice for trigonometric functions.
    [Show full text]
  • The Unit Circle 4.2 TRIGONOMETRIC FUNCTIONS
    292 Chapter 4 Trigonometry 4.2 TRIGONOMETRIC FUNCTIONS : T HE UNIT CIRCLE What you should learn The Unit Circle • Identify a unit circle and describe its relationship to real numbers. The two historical perspectives of trigonometry incorporate different methods for • Evaluate trigonometric functions introducing the trigonometric functions. Our first introduction to these functions is using the unit circle. based on the unit circle. • Use the domain and period to Consider the unit circle given by evaluate sine and cosine functions. x2 ϩ y 2 ϭ 1 Unit circle • Use a calculator to evaluate trigonometric functions. as shown in Figure 4.20. Why you should learn it y Trigonometric functions are used to (0, 1) model the movement of an oscillating weight. For instance, in Exercise 60 on page 298, the displacement from equilibrium of an oscillating weight x suspended by a spring is modeled as (− 1, 0) (1, 0) a function of time. (0,− 1) FIGURE 4.20 Imagine that the real number line is wrapped around this circle, with positive numbers corresponding to a counterclockwise wrapping and negative numbers corresponding to a clockwise wrapping, as shown in Figure 4.21. y y t > 0 (x , y ) t t < 0 t θ (1, 0) Richard Megna/Fundamental Photographs x x (1, 0) θ t (x , y ) t FIGURE 4.21 As the real number line is wrapped around the unit circle, each real number t corresponds to a point ͑x, y͒ on the circle. For example, the real number 0 corresponds to the point ͑1, 0 ͒. Moreover, because the unit circle has a circumference of 2␲, the real number 2␲ also corresponds to the point ͑1, 0 ͒.
    [Show full text]