HYDROVOLCANIC (TUFF) RINGS and CONES from PHREATOMAGMATIC EXPLOSIVE ERUPTIONS on MARS P. Brož1,2 and E. H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle . -
(2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. -
Source to Surface Model of Monogenetic Volcanism: a Critical Review
Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres. -
Mud Volcano Eruptions and Earthquakes in the Northern Apennines and Sicily, Italy
Tectonophysics 474 (2009) 723–735 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy Marco Bonini Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Via G. La Pira 4, I-50121 Florence, Italy article info abstract Article history: The relations between earthquakes and the eruption of mud volcanoes have been investigated at the Pede–Apennine Received 28 November 2008 margin of the Northern Apennines and in Sicily. Some of these volcanoes experiencederuptionsorincreased Received in revised form 1 April 2009 activity in connection with historical seismic events, showing a good correlation with established thresholds of Accepted 20 May 2009 hydrological response (liquefaction) to earthquakes. However, the majority of eruptions have been documented to Available online 25 May 2009 be independent of seismic activity, being mud volcanoes often not activated even when the earthquakes were of suitable magnitude and the epicentre at the proper distance for the triggering. This behaviour suggests that Keywords: fi fl Mud volcanoes paroxysmal activity of mud volcanoes depends upon the reaching of a speci c critical state dictated by internal uid Vents pressure, and implies that the strain caused by the passage of seismic waves can activate only mud volcanoes in near- Earthquakes critical conditions (i.e., close to the eruption). Seismogenic faults, such as the Pede–Apennine thrust, often Eruptions structurally control the fluid reservoirs of mud volcanoes, which are frequently located at the core of thrust-related Northern Apennines folds. Such an intimate link enables mud volcanoes to represent features potentially suitable for recording Sicily perturbations associated with the past and ongoing tectonic activity of the controlling fault system. -
Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, [email protected] Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ...................................................................................................................................................................... -
Volcanoes a to Z
Mount St Helens National Volcanic Monument – Teacher’s Corner -Teacher Info. Gifford Pinchot National Forest USDA Forest Service Volcanoes A to Z – Bus Activity Time Requirement: all day Exhibit / Trail Used: all exhibits/trails visited Locations: all locations visited, review on the bus en route back to your school. This activity is to be completed throughout the day and between other activities. Students will make note of key words while reading exhibits, interpretive signs, or labels, or by hearing them from each other, their teacher, movies or rangers. Consider distributing on the bus and collecting on the bus. Goal: 1) The student will become familiar with terminology related to the study of volcanoes, geology, or the ecosystems that surround them. Objectives: 1) The student will listen attentively. 2) The student will recall and list vocabulary words for things and concepts encountered on a field trip to Mount St. Helens National Volcanic Monument. 3) The student will distinguish nouns from other parts of speech. WASHINGTON EALRS and OREGON BENCHMARK STANDARDS Washington Social Studies 2.0- The student understands the complex physical and human characteristics of places and regions. Geography 2.1- Describe the natural characteristics of places and regions. Science 4.2 Use writing and speaking skills to organize and express science ideas. a. Use science vocabulary appropriately in written explanations, conversations and verbal presentations. Oregon Science-CCG The Dynamic Earth- Understand the properties and limited availability of the materials which make up the Earth. BM1- Recognize physical differences in Earth materials. Language-CCG Select functional, precise, and descriptive words appropriate to audience and purpose. -
Response of Mud Volcanoes to Earthquakes: Role of Static Strains and Frequency-Dependence of Ground Motion
IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 1P2_2B-O1 Room A3 Date/Time: July 21 17:00-17:15 Response of mud volcanoes to earthquakes: role of static strains and frequency-dependence of ground motion Michael Manga1, Maxwell Rudolph2, Marco Bonini3 1University of California, Berkeley, USA, 2University of Colorado, Boulder, USA, 3Consiglio Nazionale delle Ricerche, Florence, Italy E-mail: [email protected] Distant earthquakes can trigger the eruption of mud volcanoes. We report observations of the response of the Davis-Schrimpf, California, mud volcanoes to 2 earthquakes and non-response to 4 other earthquakes. We find that eruptions are triggered by dynamic stresses and that the mud volcanoes are more sensitive to long period seismic waves than short period waves with the same amplitude. These observations are consistent with models in which fluid mobility is enhanced by dislodging bubbles by the time-varying flows produced by seismic waves. In the Northern Apennines, Italy, we document responses and non-responses to the May-June 2012 Emilia seismic sequence. Here we find that discharge only increases where dikes under the vents are unclamped by the static stresses produced by the earthquakes. Mud volcanoes can thus respond to static stress changes (if feeder dikes are unclamped) and dynamic stresses produced by seismic waves (possibly by mobilizing bubbles). ©IAVCEI 2013 Scientific Assembly. All rights reserved. 290 IAVCEI -
Geologic Map of the Mchan Reservoir Quadrangle, Camas and Gooding
IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 116 MOSCOW-BOISE-POCATELLO WWW.IDAHOGEOLOGY.ORG KAUFFMAN, OTHBERG, AND GARWOOD Disclaimer: This Digital Web Map is an informal report and may be CORRELATION OF MAP UNITS GEOLOGIC MAP OF THE MCHAN RESERVOIR QUADRANGLE, revised and formally published at a later time. Its content and format may not conform to agency standards. Artificial Unconsolidated Sedimentary Volcanic Intrusive Deposits and Mass Movement Deposits Rocks Rocks Alluvial Mass Movement CAMAS AND GOODING COUNTIES, IDAHO Deposits Deposits phy with common hoodoo cliffs and blocky slopes. Soils are generally thin SYMBOLS to absent. m Holocene Qas Qaf Qc Qls Tmh Basalt of McHan (Miocene)—Medium gray, fine- to medium-grained nearly Contact: dashed where approximately located. John D. Kauffman, Kurt L. Othberg, and Dean L. Garwood Pleistocene QUATERNARY aphyric to plagioclase-phyric basalt. Consists of one to three flows. Plagio- Qsch clase phenocrysts in the more phyric flows (or parts of a flow) range from Fault: bar and ball on downthrown side; dashed where inferred; 2-7 mm in length for individual crystals and 5-10 mm for glomerocrysts. unconformity dotted where concealed. Olivine is uncommon and typically <1 mm. Remanent magentic polarity is 2010 Tsma Pliocene probably reverse, although both normal, reverse, inconclusive, or inclina- Fold axis: arrow indicates direction of plunge. unconformity tion sensitive readings were obtained in the field. Thickness ranges from Trd less than 15 m (50 feet) to as much as 30 m (100 feet). Unconformably Anticline. A unconformity overlies Hash Spring sediments or Gwin Spring tuff where the sediments are Qc Tgs Tmh Thsg Thsg Tgs Tbcc absent. -
Explosive Mud Volcano Eruptions and Rafting of Mud Breccia Blocks
Earth and Planetary Science Letters 555 (2021) 116699 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Explosive mud volcano eruptions and rafting of mud breccia blocks ∗ Adriano Mazzini a,d, , Grigorii Akhmanov b, Michael Manga c, Alessandra Sciarra d, Ayten Huseynova e, Arif Huseynov e, Ibrahim Guliyev e a Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway b Faculty of Geology, Lomonosov Moscow State University, Moscow, Russian Federation c Department of Earth and Planetary Science, University of California, Berkeley, USA d Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, Italy e Oil and Gas Institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan a r t i c l e i n f o a b s t r a c t Article history: Azerbaijan hosts the highest density of subaerial mud volcanoes on Earth. The morphologies characterizing Received 6 June 2020 these structures vary depending on their geological setting, frequency of eruption, and transport Received in revised form 11 October 2020 processes during the eruptions. Lokbatan is possibly the most active mud volcano on Earth exhibiting Accepted 26 November 2020 impressive bursting events every ∼5 years. These manifest with impressive gas flares that may reach Available online xxxx 3 more than 100 meters in height and the bursting of thousands of m of mud breccia resulting in Editor: J.-P. Avouac spectacular mud flows that extend for more than 1.5 kilometres. Unlike other active mud volcanoes, Keywords: to our knowledge Lokbatan never featured any visual evidence of enduring diffuse degassing (e.g., Lokbatan mud volcano Azerbaijan active pools and gryphons) at and near the central crater. -
Marine Geology 378 (2016) 196–212
Marine Geology 378 (2016) 196–212 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) Desirée Palomino a,⁎, Nieves López-González a, Juan-Tomás Vázquez a, Luis-Miguel Fernández-Salas b, José-Luis Rueda a,RicardoSánchez-Lealb, Víctor Díaz-del-Río a a Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Puerto Pesquero S/N, 29640 Fuengirola, Málaga, Spain b Instituto Español de Oceanografía, Centro Oceanográfico de Cádiz, Muelle Pesquero S/N, 11006 Cádiz, Spain article info abstract Article history: The seabed morphology, type of sediments, and dominant benthic species on eleven mud volcanoes and diapirs Received 28 May 2015 located on the northern sector of the Gulf of Cádiz continental slope have been studied. The morphological char- Received in revised form 30 September 2015 acteristics were grouped as: (i) fluid-escape-related features, (ii) bottom current features, (iii) mass movement Accepted 4 October 2015 features, (iv) tectonic features and (v) biogenic-related features. The dominant benthic species associated with Available online 9 October 2015 fluid escape, hard substrates or soft bottoms, have also been mapped. A bottom current velocity analysis allowed, the morphological features to be correlated with the benthic habitats and the different sedimentary and ocean- Keywords: fl Seepage ographic characteristics. The major factors controlling these features and the benthic habitats are mud ows Mud volcanoes and fluid-escape-related processes, as well as the interaction of deep water masses with the seafloor topography. -
The Goshogake Mud Volcano Field, Tohoku, Northern Japan: an Acidic, High- 1 2 Temperature System Related to Magmatic Volcanism
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1094.pdf THE GOSHOGAKE MUD VOLCANO FIELD, TOHOKU, NORTHERN JAPAN: AN ACIDIC, HIGH- 1 2 TEMPERATURE SYSTEM RELATED TO MAGMATIC VOLCANISM. G. Komatsu , R. Ishimaru , N. Miyake2, K. Kawai3, M. Kobayashi4, and H. Sakuma5, 1International Research School of Planetary Sciences, Un- iversità d'Annunzio, Viale Pindaro 42, 65127 Pescara, Italy ([email protected]), 2Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, 3Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan, 4Department of Earth and Planetary Environmental Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan. 5Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan. Introduction: Mud volcanism is widespread in We present documentation of the Goshogake mud various geologic settings in the world. Large-scale volcano features, and data from field measurements of mud volcanoes are well known for example along the temperature of emitted watery mud and methane abun- Alpine orogenic belt of the Mediterranean, Caspian dance, as well as from laboratory analyses for pH of and Black Sea regions [e.g., 1, 2, 3, 4, 5]. The most stu- collected watery mud and isotope ratios of water died mud volcanism sites are related to sedimentary phase, mineralogical composition of deposited solid processes at relatively low temperatures. For example, phases, collected gas composition and microbiology in Azerbaijan the temperatures of fluids consisting of [16, 17, 18]. -
Special Paper 470 3300 Penrose Place, P.O
What Is a Volcano? edited by Edgardo Cañón-Tapia Centro de Investigación Científica y de Educacíon Superior de Ensenada Department of Geology Carretera Ensenada-Tijuana No. 3918 Fraccionamiento Zona Playitas Ensenada Baja California Mexico C.P. 22860 Alexandru Szakács Sapientia University Department of Environmental Sciences Cluj-Napoca, Romania and Romanian Academy Institute of Geodynamics Bucharest, Romania Special Paper 470 3300 Penrose Place, P.O. Box 9140 Boulder, Colorado 80301-9140, USA 2010 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/960985/front_matter.pdf by guest on 27 September 2021 Copyright © 2010, The Geological Society of America (GSA), Inc. All rights reserved. GSA grants permission to individual scientists to make unlimited photocopies of one or more items from this volume for noncommercial purposes advancing science or education, including classroom use. For permission to make photocopies of any item in this volume for other noncommercial, nonprofit purposes, contact The Geological Society of America. Written permission is required from GSA for all other forms of capture or reproduction of any item in the volume including, but not limited to, all types of electronic or digital scanning or other digital or manual transformation of articles or any portion thereof, such as abstracts, into computer-readable and/or transmittable form for personal or corporate use, either noncommercial or commercial, for-profit or otherwise. Send permission requests to GSA Copyright Permissions, 3300 Penrose Place, P.O. Box 9140, Boulder, Colorado 80301-9140, USA. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint.