Advances in Analysis and Detection of Major Mycotoxins in Foods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes
toxins Review Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes Guozhong Zhao 1, Yi-Fei Wang 1, Junling Chen 2 and Yunping Yao 1,* 1 State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; [email protected] (G.Z.); [email protected] (Y.-F.W.) 2 College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, China; [email protected] * Correspondence: [email protected]; Tel.: +86-22-6091-2585 Received: 2 January 2020; Accepted: 21 January 2020; Published: 23 January 2020 Abstract: Fermented pastes are some of the most popular traditional products in China. Many studies reported a strong possibility that fermented pastes promote exposure to mycotoxins, including aflatoxins, ochratoxins, and cereulide, which were proven to be carcinogenic and neurotoxic to humans. The primary mechanism of pathogenicity is by inhibiting protein synthesis and inducing oxidative stress using cytochrome P450 (CYP) enzymes. The level of mycotoxin production is dependent on the pre-harvest or post-harvest stage. It is possible to implement methods to control mycotoxins by using appropriate antagonistic microorganisms, such as Aspergillus niger, Lactobacillus plantarum, and Saccharomyces cerevisiae isolated from ordinary foods. Also, drying products as soon as possible to avoid condensation or moisture absorption in order to reduce the water activity to lower than 0.82 during storage is also effective. Furthermore, organic acid treatment during the soaking process reduces toxins by more than 90%. -
Detoxification Strategies for Zearalenone Using
microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1. -
Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition. -
COMBINED LIST of Particularly Hazardous Substances
COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane -
Mycotoxins: a Review of Dairy Concerns
Mycotoxins: A Review of Dairy Concerns L. W. Whitlow, Department of Animal Science and W. M. Hagler, Jr., Department of Poultry Science North Carolina State University, Raleigh, NC 27695 Introduction mycotoxins such as the ergots are known to affect cattle and may be prevalent at times in certain feedstuffs. Molds are filamentous (fuzzy or dusty looking) fungi that occur in many feedstuffs including roughages and There are hundreds of different mycotoxins, which are concentrates. Molds can infect dairy cattle, especially diverse in their chemistry and effects on animals. It is during stressful periods when they are immune likely that contaminated feeds will contain more than one suppressed, causing a disease referred to as mycosis. mycotoxin. This paper is directed toward those Molds also produce poisons called mycotoxins that affect mycotoxins thought to occur most frequently at animals when they consume mycotoxin contaminated concentrations toxic to dairy cattle. A more extensive feeds. This disorder is called mycotoxicosis. Mycotoxins review is available in the popular press (Whitlow and are produced by a wide range of different molds and are Hagler, 2004). classified as secondary metabolites, meaning that their function is not essential to the mold’s existence. The Major toxigenic fungi and mycotoxins thought to be U.N.’s Food and Agriculture Organization (FAO) has the most prevalent and potentially toxic to dairy cattle. estimated that worldwide, about 25% of crops are affected annually with mycotoxins (Jelinek, 1987). Such surveys Fungal genera Mycotoxins reveal sufficiently high occurrences and concentrations of Aspergillus Aflatoxin, Ochratoxin, mycotoxins to suggest that mycotoxins are a constant Sterigmatocystin, Fumitremorgens, concern. -
New Markers in the Mycotox Profile
New Markers in the MycoTOX Profile We are happy to announce the addition of four new mycotoxin markers to our MycoTOX Profile. The test now includes 11 mycotoxins from 40 species of mold, making it by far the most comprehensive and competitively priced mycotoxin test available. It also still more sensitive and accurate than other tests available, because we use LC/MS/MS technology. Here is an overview of the four new mycotoxin markers: Gliotoxin Gliotoxin (GTX) is produced by the mold genus Aspergillus. Aspergillus spreads in the environment by releasing conidia which are capable of infiltrating the small alveolar airways of individuals. In order to evade the body’s defenses Aspergillus releases Gliotoxin to inhibit the immune system. One of the targets of Gliotoxin is PtdIns (3,4,5) P3. This results in the downregulation of phagocytic immune defense, which can lead to the exacerbation of polymicrobial infections. Gliotoxin impairs the activation of T-cells and induces apoptosis in monocytes and in monocyte-derived dendritic cells. These impairments can lead to multiple neurological syndromes. Mycophenolic Acid Mycophenolic Acid (MPA) produced by the Penicillium fungus. MPA is an immunosuppressant which inhibits the proliferation of B and T lymphocytes. MPA exposure can increase the risk of opportunistic infections such as Clostridia and Candida. MPA is associated with miscarriage and congenital malformations when the woman is exposed in pregnancy. Dihydrocitrinone Dihydrocitrinone is a metabolite of Citrinin (CTN), which is a mycotoxin that is produced by the mold species Aspergillus, Penicillium, and Monascus. CTN exposure can lead to nephropathy, because of its ability to increase permeability of mitochondrial membranes in the kidneys. -
Vomitoxin (DON) Fact Sheet
Crop File 6.05.013 Issued 09/17 ffv Livestock and Feedstuff Management Vomitoxin (DON) fact sheet “Mycotoxins” are natural chemicals produced by certain Table 2. FDA advisory levels for vomitoxin (DON) in various fungi, many that produce molds. Mycotoxins can affect commodities human or animal health if they consume contaminated food GRAINS and GRAIN PRODUCTS Advisory level1 or feed. There are currently 400 to 500 known mycotoxins, intended for: (mg/kg or ppm) Beef or feedlot cattle, older than 4 each produced by a different mold. 10 (11.4) months A. What is “vomitoxin”? Dairy cattle, older than 4 months 10 (11.4) 1. Common name for deoxynivalenol (DON) Swine 5 (5.7) Chickens 10 (11.4) 2. Produced by Fusarium and GIbberella fungi a. Fusarium graminearum is most notable for DON All other animals 5 (5.7) DISTILLERS GRAIN, BREWERS GRAINS, production Advisory level1 GLUTEN FEEDS, and GLUTEN MEAL i. Responsible for head blight or “scab” disease of (mg/kg or ppm) intended for: wheat Beef cattle, older than 4 months 30 (34) ii. Responsible for “red ear rot” in corn b. Molds can proliferate before harvest, but continue to Dairy cattle, older than 4 months 30 (34) grow postharvest TOTAL RATION2 Advisory level1 intended for: (mg/kg or ppm) B. Vomitoxin (DON) advisory levels Beef or feedlot cattle, older than 4 10 (11.4) months 1. Advisory levels differ from action levels Dairy cattle, older than 4 months 5 (5.7) a. Provide an adequate margin of safety to protect human and animal health Swine 1 (1.1) b. -
Biological Toxins As the Potential Tools for Bioterrorism
International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins. -
Determination of Zeranol and Its Metabolites in Bovine Muscle Tissue with Gas Chromatography-Mass Spectrometry
Bull Vet Inst Pulawy 56, 335-342, 2012 DOI: 10.2478/v10213-012-0059-4 DETERMINATION OF ZERANOL AND ITS METABOLITES IN BOVINE MUSCLE TISSUE WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY IWONA MATRASZEK-ŻUCHOWSKA, BARBARA WOŹNIAK, AND JAN ŻMUDZKI Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland [email protected] Received: June 19, 2012 Accepted: September 7, 2012 Abstract This paper describes the quantitative method of determination of chosen substances from resorcylic acid lactones group: zeranol, taleranol, α-zearalenol, β-zearalenol, and zearalanone in bovine muscle tissue. The presented method is based on double diethyl ether liquid-liquid extraction (LLE), solid phase extraction (SPE) clean up, and gas chromatography mass spectrometry (GC- MS) analysis. The residues were derivatised with a mixture of N-methyl-N-trimethylsilyltrifluoroacetamide, ammonium iodide, and DL-dithiothreitol (1,000:2:5, v/w/w). The GC-MS apparatus was operated in positive electron ionisation mode. The method was validated according to the European Union performance criteria pointed in Decision Commission 2002/657/EC. The average recoveries of all analytes at 1 µg kg-1 level were located between 83.7% and 94.5% values with the coefficients of variation values <25%. The decision limits (CCα) and detection capabilities (CCβ) for all analytes ranged from 0.58 to 0.82 µg kg-1 and from 0.64 to 0.94 µg kg-1, respectively. The procedure has been accredited and is used as a screening and confirmatory method in control of hormone residues in animal tissues. Key words: bovine muscle tissue, zeranol, GC-MS. -
Comparative Characterization of G Protein Α Subunits in Aspergillus Fumigatus
pathogens Article Comparative Characterization of G Protein α Subunits in Aspergillus fumigatus Yong-Ho Choi 1, Na-Young Lee 1, Sung-Su Kim 2, Hee-Soo Park 3 and Kwang-Soo Shin 1,* 1 Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; [email protected] (Y.-H.C.); [email protected] (N.-Y.L.) 2 Department of Biomedical Laboratory Science, Daejeon University, Daejeon 34520, Korea; [email protected] 3 School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected] Received: 12 February 2020; Accepted: 3 April 2020; Published: 9 April 2020 Abstract: Trimeric G proteins play a central role in the G protein signaling in filamentous fungi and Gα subunits are the major component of trimeric G proteins. In this study, we characterize three Gα subunits in the human pathogen Aspergillus fumigatus. While the deletion of gpaB and ganA led to reduced colony growth, the growth of the DgpaA strain was increased in minimal media. The germination rate, conidiation, and mRNA expression of key asexual development regulators were significantly decreased by the loss of gpaB. In contrast, the deletion of gpaA resulted in increased conidiation and mRNA expression levels of key asexual regulators. The deletion of gpaB caused a reduction in conidial tolerance against H2O2, but not in paraquat (PQ). Moreover, the DgpaB mutant showed enhanced susceptibility against membrane targeting azole antifungal drugs and reduced production of gliotoxin (GT). The protein kinase A (PKA) activity of the DganA strain was severely decreased and protein kinase C (PKC) activity was detected all strains at similar levels, indicating that all G protein α subunits of A. -
Host Factors Modulating Ochratoxin a Biosynthesis During Fruit Colonization by Aspergillus Carbonarius
Journal of Fungi Article Host Factors Modulating Ochratoxin A Biosynthesis during Fruit Colonization by Aspergillus carbonarius Uriel Maor 1,2, Omer Barda 1, Sudharsan Sadhasivam 1 , Yang Bi 3, Varda Zakin 1, Dov B. Prusky 1,3 and Edward Sionov 1,* 1 Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7528809, Israel; [email protected] (U.M.); [email protected] (O.B.); [email protected] (S.S.); [email protected] (V.Z.); [email protected] (D.B.P.) 2 Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel 3 College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; [email protected] * Correspondence: [email protected]; Tel.: +972-3-968-3693 Abstract: Aspergillus carbonarius is a strong and consistent ochratoxin A (OTA) producer and consid- ered to be the main source of this toxic metabolite in grapes and grape products such as wine, grape juice and dried vine fruit. OTA is produced under certain growth conditions and its accumulation is affected by several environmental factors, such as growth phase, substrate, temperature, water activity and pH. In this study, we examined the impact of fruit host factors on regulation and ac- cumulation of OTA in colonized grape berries, and assessed in vitro the impact of those factors on the transcriptional levels of the key genes and global regulators contributing to fungal colonization and mycotoxin synthesis. -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.