Delayed Traumatic Intracranial Bleeding and Herniation After Initial Negative Computed Tomography Scan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bruise, Contusion & Ecchymosis Conventions
Bruise, Contusion and Ecchymosis MedDRA Proactivity Proposal Implementation MedDRA Version 16.0 I. MSSO Recognized Definitions of Concepts and Terms The MSSO has designated Dorland’s Illustrated Medical Dictionary as the standard reference for medical definitions. The following definitions are cited from Dorland’s 27th edition: Bruise – A superficial injury produced by impact without laceration; a contusion Contusion – A bruise; an injury of a part without a break in the skin Ecchymosis – A small hemorrhagic spot, larger than a petechia, in the skin or mucous membrane forming a nonelevated, rounded or irregular, blue or purplish patch. Hematoma – A localized collection of blood, usually clotted, in an organ, space, or tissue, due to a break in the wall of a blood vessel. Hemorrhage – The escape of blood from the vessels; bleeding. Petechia – A pinpoint, non-raised, perfectly round, purplish red spot caused by intradermal or submucous hemorrhage. Additional comments regarding the definitions: Bruise and contusion are synonymous, and are often used in a colloquial context. Bruise and contusion are each considered a result of injury. Bruise and contusion have been used to describe minor hemorrhage within tissue, where traumatized blood vessels leak blood into the interstitial space. Commonly, capillaries and sometimes venules are injured within skin, subcutaneous tissue, muscle, or bone. In addition to trauma, the terms bruise, ecchymosis, and to a lesser extent, contusion, have also been used as clinical signs of disorders of platelet function, coagulopathies, venous congestion, allergic reactions, etc. Hemorrhage may be used to describe blood escaping from vessels and retained in the interstitial space, and perhaps more commonly, to describe the escape of blood from vessels, and flowing freely external to the tissues. -
Selection of Treatment for Large Non-Traumatic Subdural Hematoma Developed During Hemodialysis
Korean J Crit Care Med 2014 May 29(2):114-118 / http://dx.doi.org/10.4266/kjccm.2014.29.2.114 ■ Case Report ■ pISSN: 1229-4802ㆍeISSN: 2234-3261 Selection of Treatment for Large Non-Traumatic Subdural Hematoma Developed during Hemodialysis Chul-Hee Lee, M.D., Ph.D. Department of Neurosurgery, Gyeongsang National University School of Medicine, Jinju, Korea A 49-year-old man with end-stage renal disease was admitted to the hospital with a severe headache and vomiting. On neurological examination the Glasgow Coma Scale (GCS) score was 15 and his brain CT showed acute subdural hematoma over the right cerebral convexity with approximately 11-mm thickness and 9-mm midline shift. We chose a conservative treatment of scheduled neurological examination, anticonvulsant medication, serial brain CT scanning, and scheduled hemodialysis (three times per week) without using heparin. Ten days after admission, he complained of severe headache and a brain CT showed an increased amount of hemorrhage and midline shift. Emergency burr hole trephination and removal of the hematoma were performed, after which symptoms improved. However, nine days after the operation a sudden onset of general tonic-clonic seizure developed and a brain CT demonstrated an in- creased amount of subdural hematoma. Under the impression of persistent increased intracranial pressure, the patient was transferred to the intensive care unit (ICU) in order to control intracranial pressure. Management at the ICU consisted of regular intravenous mannitol infusion assisted with continuous renal replacement therapy. He stayed in the ICU for four days. Twenty days after the operation he was discharged without specific neurological deficits. -
Article-P227.Pdf
CLINICAL ARTICLE J Neurosurg Pediatr 23:227–235, 2019 North American survey on the post-neuroimaging management of children with mild head injuries Jacob K. Greenberg, MD, MSCI,1 Donna B. Jeffe, PhD,2 Christopher R. Carpenter, MD, MSc,3 Yan Yan, MD, PhD,4 Jose A. Pineda, MD,5,6 Angela Lumba-Brown, MD,7 Martin S. Keller, MD,4 Daniel Berger, BA,1 Robert J. Bollo, MD, MS,8 Vijay M. Ravindra, MD, MSPH,8 Robert P. Naftel, MD,9 Michael C. Dewan, MD, MSCI,9 Manish N. Shah, MD,10 Erin C. Burns, MD,11 Brent R. O’Neill, MD,12 Todd C. Hankinson, MD,12 William E. Whitehead, MD, MPH,13 P. David Adelson, MD,14 Mandeep S. Tamber, MD, PhD,15 Patrick J. McDonald, MD, MHSc,16 Edward S. Ahn, MD,17 William Titsworth, MD,17 Alina N. West, MD, PhD,18 Ross C. Brownson, PhD,4,19,20 and David D. Limbrick Jr., MD, PhD1 Departments of 1Neurological Surgery, 2Medicine, 4Surgery, 5Pediatrics, and 6Neurology, 3Division of Emergency Medicine, 19Alvin J. Siteman Cancer Center, and 20Prevention Research Center, Washington University School of Medicine in St. Louis, Missouri; 7Department of Emergency Medicine, Stanford University, Stanford, California; 8Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah; 9Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; 10Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas; 11Department of Pediatrics, Oregon Health & Science University, Portland, Oregon; 12Department of Neurosurgery, -
Immune Thrombocytopenic Purpura in a Twin Girl Revealed by a Traumatic Injury in Parakou (North Benin)
Immune thrombocytopenic purpura in a twin girl revealed by a traumatic injury in parakou (North Benin) Adedemy JD 1*, Noudamadjo A 1, Kpanidja G 1, Agossou J 1, Agbeille Mohamed F 1, Dovonou CA 2 1 Mother and Child Department, Parakou Teaching Hospital, Republic of Benin, and Faculty of Medicine, University of Parakou West Africa 2 Department of Medicine, Parakou Teaching Hospital, and Faculty of Medicine, University of Parakou, West Africa Abstract Background: ITP seems to be rare but in tropical settings thrombocytopenia is often encountered among children. Objective: Authors through this case report are putting emphasy on the diagnosis and management of ITP in a 4 year old twin girl admitted in the pediatric emergency ward for hematuria and bleeding from various origins seen in the context of a domestic trauma. Results: The various clinical signs have been analyzed to confirm ITP through exclusion of other possible health conditions. The management of ITP depend on the severity of clinical signs and in some cases the situations can be life threatening. In this case report, Blood transfusion and corticosteroids were the main treatment tools. The hospital stay was about 47 days and an ambulatory follow up was conducted for almost 6 months. Conclusion: In the context of various bleeding disorders, hematuria and thrombocytopenia, autoimmune thrombocytopenia in a twin girl was revealed by a domestic trauma. Citation: Adedemy JD, Noudamadjo A, Kpanidja G, Agossou J, Agbeille MF, Dovonou CA (2019) Immune Thrombocytopenic Purpura in a twin girl revealed by a traumatic injury in Parakou (North Benin). Adv Pediatr Res 6:27. -
How Significant Is Bleeding in Antiphospholipid Antibody
Treatment of Anti-Phospholipid Syndrome and Prothrombin Deficiency with Plasma Exchange Lowell Tilzer KU Medical Center Department of Pathology & Lab Medicine Case 72 YEARS OLD FEMALE PRESENTED TO KUMC WITH BLEEDING FOLLOWING ROUTINE HEMORRHOIDECTOMY SURGERY Past Medical History • Surgeries: Bilateral tubal ligation, appendectomy, partial hysterectomy, bilateral bunion surgery – No bleeding complications • 2008: Presented to ER with chest pain – Incidentally found prolonged PT and PTT + Lupus anticoagulant and anticardiolipin antibodies • 2009: Melanotic stool with severe anemia (Hb 4) – Blood transfusion (>10 units) – Attributed to long-term use of Aspirin Brief course Initial Work-up Reported Normal Test Value Range PT/INR 2.2 (HIGH) 0.8-1.2 PTT 87.4 (HIGH) 24.0-40.0 PT mixing study @ 60 mins 1.5 (HIGH) PTT mixing study @ 60 mins 82.8 (HIGH) Factor 2 assay 10% (LOW) 50-150% Factor 5 assay 78% 50-150% Factor 7 assay 153% (HIGH) 50-150% Factor 8 assay 235% (HIGH) 50-150% Factor 10 assay 68% 50-150% 300 Linear dilutions 250 200 150 100 % Normal control 50 0 Factor 2 Factor 5 Factor 7 Factor 8 Factor 10 Additional coagulation study Test Result Interpretation dRVVT Prolonged Lupus anticoagulant Abs Hexagonal Lupus Positive Lupus anticoagulant Abs anticoagulant Anti-b2 GPI IgG Positive Anti-b2 GPI IgM Positive Support APS diagnosis Anti-cardiolipin IgG Positive Anti-cardiolipin IgM Positive There is NO Factor 2 inhibitor, therefore previous result of low Factor 2 inhibitor <0.4 BU Factor 2 level was due to lupus (activity-based) anticoagulant Abs against phospholipids in the assay. Algorithm for Screening tests (PT/INR, aPTT) coagulopathies Mixing study Heparin, DTI PL dependent assays (aPTT or dRVVT + Hexa) PTT PT PT PTT LA+ Factor LA- Intrinsic Common Extrinsic inhibitors pathway pathway pathway Revised Criteria for Antiphospholipid Syndrome (APS) (Sydney Criteria) APS: ≥ 1 Laboratory Criteria AND ≥ 1 Clinical Criteria • Laboratory Criteria: “≥ 2 occasions 3 months apart” 1. -
Intracranial Haemorrhage in a 26 Year-Old Woman with Idiopathic Thrombocytopenic Purpura
Postgraduate Medical Journal (1987) 63, 781-783 Postgrad Med J: first published as 10.1136/pgmj.63.743.781 on 1 September 1987. Downloaded from Intracranial haemorrhage in a 26 year-old woman with idiopathic thrombocytopenic purpura Gavin Awerbuch and Reuven Sandyk Department ofNeurology, University ofArizona Health Sciences Center, Tucson, AZ. 85724, USA. Summary: Intracranial haemorrhage (ICH), a rare complication of idiopathic thrombocytopenic purpura (ITP), described only once previously in an adult, is usually fatal. We report a previously healthy 26 year old woman with chronic ITP in whom spontaneous ICH developed. The eventual favourable outcome in this case despite severe initial neurological deficit makes this case unusual. The importance of aggressive management in an ITP associated ICH is stressed and a plan for management is suggested. Introduction Although relatively rare, intracranial haemorrhage of 5.7 g/dl, white blood count of 15.5 x I09/l with a (ICH) is the most serious complication of idiopathic normal differential and a platelet count of 6.0 x 109/l, thrombocytopenic purpura (ITP) and is the leading reticulocyte count was 3.2%. The prothrombin time, reported cause ofdeath.'`3 In children, nearly 20 cases partial thromboplastin time, thrombin time, fibrin- Protected by copyright. of acute ITP complicated by ICH have been reported. ogen, fibrin monomers, and fibrin split products were Previous reports have alluded to ICH associated with all normal. An electroencephalogram (EEG), gallium ITP in adults,4`7 but ICH has been documented only scan of the abdomen, chest X-ray, and computerized once in adults.8 We report the occurrence of an axial tomography (CT scan) of the head were normal. -
Cerebral Venous Thrombosis After Intravenous Immunoglobulin Therapy in Immune Thrombocytopenic Purpura
Case Report Cerebral Venous Thrombosis after Intravenous Immunoglobulin Therapy in Immune Thrombocytopenic Purpura Joe James, P. V. Shiji, Chandni Radhakrishnan Department of Internal Medicine, Government Medical College, Kozhikode, Kerala, India Abstract A common misconception is that immune thrombocytopenic purpura (ITP) causes only bleeding diathesis. From this case vignette of a young male with ITP who had cerebral venous thrombosis, we highlight the importance of considering venous thrombosis in such patients when they present with focal cerebral signs. Keywords: Immune thrombocytopenic purpura, intravenous immunoglobulin, venous thrombosis 3 INTRODUCTION blood cell count of 21,800/mm with 84% neutrophils, 12% lymphocytes, and 4% mixed cells; hemoglobin of 11.2 g/dl; and Immune thrombocytopenic purpura (ITP) is a disorder platelet count of 65,000/mm3. Serum sodium was 136 mEq/L, characterized by autoimmune destruction of platelets, potassium 3.9 mEq/L, calcium 9.1 mg/dL, and plasma glucose which commonly presents as bleeding diathesis. However, 105 mg/dL. Serum creatinine was 1.1 mg/dL, total bilirubin thromboembolic complications can also occur in ITP. Here, was 1.5 mg/dL, and alanine aminotransferase was 30 IU. we describe a case of ITP who presented with cerebral venous International normalized ratio was 1.03 and activated partial thrombosis (CVT) after treatment with high‑dose intravenous thromboplastin time was 31.3 (reference <28). Anti‑nucleosome immunoglobulin (IVIg). antibody, anti ds‑DNA, C3 and C4 levels were normal. HIV, HBsAg, and HCV serology were negative. Computed CASE REPORT tomography (CT) of the head showed a small intraparenchymal A 26‑year‑old‑male with a history of ITP, presented with hematoma in the right frontal lobe [Figure 1a]. -
Protein C 결핍에서 발생한 소모성 응고질환으로 인한 뇌내출혈로 야기된 뇌성마비 환자에 대한 증례기록 연세대학교 의과대학 세브란스병원 재활의학과1, 소아청소년과2 조유나1・이영 목 2・박 은 숙 1・최 자 영 1・박 천 웅 1・나 동 욱 1
J Korean Child Neurol Soc 2017;25(1):44-47 Case report pISSN 1226-6884•eISSN 2383-8973 Protein C 결핍에서 발생한 소모성 응고질환으로 인한 뇌내출혈로 야기된 뇌성마비 환자에 대한 증례기록 연세대학교 의과대학 세브란스병원 재활의학과1, 소아청소년과2 조유나1・이영 목 2・박 은 숙 1・최 자 영 1・박 천 웅 1・나 동 욱 1 Cerebral Palsy due to Intracranial Hemorrhage Yoona Cho, MD1, Young-Mock Lee, MD2, Eun Sook Park, MD1, Ja Young Choi, MD1, Chunung Caused by Consumptive Coagulopathy in Protein C Park, MD1, Dong-wook Rha, MD, PhD1 Deficiency: A Case Report 1Department and Research Institute of Rehabi- Protein C (PROC) is a potent anticoagulant inactivating coagulation factors Va and litation Medicine, 2Department of Pediatrics, VIIIa. PROC deficiency is very rare condition inherited as an autosomal dominant Gangnam Severance Hospital, Yonsei University or recessive trait, and associated with various thromboembolic and ischemic College of Medicine, Seoul, Korea conditions. Moreover, severe form of PROC deficiency can cause fatal hemorrhagic complications due to consumptive coagulopathy. We reported two children with Submitted: 24 August, 2016 Revised: 13 September, 2016 hemorrhagic stroke who were diagnosed as severe PROC deficiency caused by two Accepted: 13 September, 2016 different types of compound heterozygous PROC gene mutations. We described results of laboratory tests, genetic analysis, brain magnetic resonance images, and Correspondence to Dong-wook Rha, MD, PhD functional outcomes. Both children received prophylactic anticoagulation therapy Department and Research Institute of Rehabilitation, and presented with purple-colored skin lesions during rehabilitation. Purpura Medicine Yonsei University College of Medicine, Severance Rehabilitation Hospital, BioMechanics and fulminans caused by insufficient anticoagulation should be differentiated from Robotic Rehabilitation Laboratory, 50-1 Yonsei-ro hematoma caused by excessive anticoagulation therapy in these children. -
Outcome Prediction in Patients of Traumatic Brain Injury Based on Midline Shift on CT Scan of Brain
Published online: 2021-01-21 THIEME Original Article 1 Outcome Prediction in Patients of Traumatic Brain Injury Based on Midline Shift on CT Scan of Brain Shrikant Govindrao Palekar1 Manish Jaiswal2, Mandar Patil3 Vijay Malpathak1 1Department of General Surgery, Dr. Vasantrao Pawar Medical Address for correspondence Manish Jaiswal, MCh, Department of College, Hospital & research center, Adgaon, Nasik, India Neurosurgery, King George’s Medical University, Lucknow, 2Department of Neurosurgery, King George’s Medical University, Uttar Pradesh, 226003, India Lucknow, Uttar Pradesh, India (e-mail: [email protected]). 3Department of Neurosurgery, Tirunelveli Government Medical College, Tamil Nadu, India Indian J Neurosurg Abstract Background Clinicians treating patients with head injury often take decisions based on their assessment of prognosis. Assessment of prognosis could help communication with a patient and the family. One of the most widely used clinical tools for such pre- diction is the Glasgow coma scale (GCS); however, the tool has a limitation with regard to its use in patients who are under sedation, are intubated, or under the influence of alcohol or psychoactive drugs. CT scan findings such as status of basal cistern, mid- line shift, associated traumatic subarachnoid hemorrhage (SAH), and intraventricular hemorrhage are useful indicators in predicting outcome and also considered as valid options for prognostication of the patients with traumatic brain injury (TBI), especially in emergency setting. Materials and Methods 108 patients of head injury were assessed at admission with clinical examination, history, and CT scan of brain. CT findings were classified accord- ing to type of lesion and midline shift correlated to GCS score at admission. -
Thrombocytopenia and Intracranial Venous Sinus Thrombosis After “COVID-19 Vaccine Astrazeneca” Exposure
Journal of Clinical Medicine Article Thrombocytopenia and Intracranial Venous Sinus Thrombosis after “COVID-19 Vaccine AstraZeneca” Exposure Marc E. Wolf 1,2 , Beate Luz 3, Ludwig Niehaus 4 , Pervinder Bhogal 5, Hansjörg Bäzner 1,2 and Hans Henkes 6,7,* 1 Neurologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany; [email protected] (M.E.W.); [email protected] (H.B.) 2 Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, D-68167 Mannheim, Germany 3 Zentralinstitut für Transfusionsmedizin und Blutspendedienst, Klinikum Stuttgart, D-70174 Stuttgart, Germany; [email protected] 4 Neurologie, Rems-Murr-Klinikum Winnenden, D-71364 Winnenden, Germany; [email protected] 5 Department of Interventional Neuroradiology, The Royal London Hospital, Barts NHS Trust, London E1 1FR, UK; [email protected] 6 Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany 7 Medical Faculty, University Duisburg-Essen, D-47057 Duisburg, Germany * Correspondence: [email protected]; Fax: +49-711-278-345-09 Abstract: Background: As of 8 April 2021, a total of 2.9 million people have died with or from the coronavirus infection causing COVID-19 (Corona Virus Disease 2019). On 29 January 2021, the European Medicines Agency (EMA) approved a COVID-19 vaccine developed by Oxford University Citation: Wolf, M.E.; Luz, B.; and AstraZeneca (AZD1222, ChAdOx1 nCoV-19, COVID-19 vaccine AstraZeneca, Vaxzevria, Cov- Niehaus, L.; Bhogal, P.; Bäzner, H.; ishield). While the vaccine prevents severe course of and death from COVID-19, the observation of Henkes, H. Thrombocytopenia and pulmonary, abdominal, and intracranial venous thromboembolic events has raised concerns. Objec- Intracranial Venous Sinus Thrombosis after “COVID-19 Vaccine tive: To describe the clinical manifestations and the concerning management of patients with cranial AstraZeneca” Exposure. -
Neuroimaging Radiological Interpretation System for Acute Traumatic Brain Injury
JOURNAL OF NEUROTRAUMA 35:2665–2672 (November 15, 2018) ª Mary Ann Liebert, Inc. DOI: 10.1089/neu.2017.5311 Neuroimaging Radiological Interpretation System for Acute Traumatic Brain Injury Max Wintermark,1,* Ying Li,1,* Victoria Y. Ding,2,* Yingding Xu,1 Bin Jiang,1 Robyn L. Ball,2 Michael Zeineh,1,* Alisa Gean,3 and Pina Sanelli4 Abstract The purpose of the study was to develop an outcome-based NeuroImaging Radiological Interpretation System (NIRIS) for patients with acute traumatic brain injury (TBI) that would standardize the interpretation of noncontrast head computer tomography (CT) scans and consolidate imaging findings into ordinal severity categories that would inform specific patient management actions and that could be used as a clinical decision support tool. We retrospectively identified all patients transported to our emergency department by ambulance or helicopter for whom a trauma alert was triggered per established criteria and who underwent a noncontrast head CT because of suspicion of TBI, between November 2015 and April 2016. Two neuroradiologists reviewed the noncontrast head CTs and assessed the TBI imaging common data elements (CDEs), as defined by the National Institutes of Health (NIH). Using descriptive statistics and receiver operating characteristic curve analyses to identify imaging characteristics and associated thresholds that best distinguished among outcomes, we classified patients into five mutually exclusive categories: 0-discharge from the emergency department; 1- follow-up brain imaging and/or admission; 2-admission to an advanced care unit; 3-neurosurgical procedure; 4-death up to 6 months after TBI. Sensitivity of NIRIS with respect to each patient’s true outcome was then evaluated and compared with that of the Marshall and Rotterdam scoring systems for TBI. -
Quickbrain MRI for the Detection of Acute Pediatric Traumatic Brain Injury
CLINICAL ARTICLE J Neurosurg Pediatr 19:259–264, 2017 QuickBrain MRI for the detection of acute pediatric traumatic brain injury David C. Sheridan, MD, MCR,1 Craig D. Newgard, MD, MPH,1 Nathan R. Selden, MD, PhD,2 Mubeen A. Jafri, MD,3 and Matthew L. Hansen, MD, MCR1 1Department of Emergency Medicine, Center for Policy and Research in Emergency Medicine, 2Department of Neurological Surgery, Division of Pediatric Neurosurgery, and 3Department of Surgery, Division of Pediatric Surgery, Oregon Health & Science University, Portland, Oregon OBJECTIVE The current gold-standard imaging modality for pediatric traumatic brain injury (TBI) is CT, but it confers risks associated with ionizing radiation. QuickBrain MRI (qbMRI) is a rapid brain MRI protocol that has been studied in the setting of hydrocephalus, but its ability to detect traumatic injuries is unknown. METHODS The authors performed a retrospective cohort study of pediatric patients with TBI who were undergoing evaluation at a single Level I trauma center between February 2010 and December 2013. Patients who underwent CT imaging of the head and qbMRI during their acute hospitalization were included. Images were reviewed independently by 2 neuroradiology fellows blinded to patient identifiers. Image review consisted of identifying traumatic mass lesions and their intracranial compartment and the presence or absence of midline shift. CT imaging was used as the reference against which qbMRI was measured. RESULTS A total of 54 patients met the inclusion criteria; the median patient age was 3.24 years, 65% were male, and 74% were noted to have a Glasgow Coma Scale score of 14 or greater. The sensitivity and specificity of qbMRI to detect any lesion were 85% (95% CI 73%–93%) and 100% (95% CI 61%–100%), respectively; the sensitivity increased to 100% (95% CI 89%–100%) for clinically important TBIs as previously defined.