Classification on the Computational Complexity of Spin Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 20 — March 20, 2013 1 the Maximum Cut Problem 2 a Spectral
UBC CPSC 536N: Sparse Approximations Winter 2013 Lecture 20 | March 20, 2013 Prof. Nick Harvey Scribe: Alexandre Fr´echette We study the Maximum Cut Problem with approximation in mind, and naturally we provide a spectral graph theoretic approach. 1 The Maximum Cut Problem Definition 1.1. Given a (undirected) graph G = (V; E), the maximum cut δ(U) for U ⊆ V is the cut with maximal value jδ(U)j. The Maximum Cut Problem consists of finding a maximal cut. We let MaxCut(G) = maxfjδ(U)j : U ⊆ V g be the value of the maximum cut in G, and 0 MaxCut(G) MaxCut = jEj be the normalized version (note that both normalized and unnormalized maximum cut values are induced by the same set of nodes | so we can interchange them in our search for an actual maximum cut). The Maximum Cut Problem is NP-hard. For a long time, the randomized algorithm 1 1 consisting of uniformly choosing a cut was state-of-the-art with its 2 -approximation factor The simplicity of the algorithm and our inability to find a better solution were unsettling. Linear pro- gramming unfortunately didn't seem to help. However, a (novel) technique called semi-definite programming provided a 0:878-approximation algorithm [Goemans-Williamson '94], which is optimal assuming the Unique Games Conjecture. 2 A Spectral Approximation Algorithm Today, we study a result of [Trevison '09] giving a spectral approach to the Maximum Cut Problem with a 0:531-approximation factor. We will present a slightly simplified result with 0:5292-approximation factor. -
Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut
Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut Grant Schoenebeck∗ Luca Trevisany Madhur Tulsianiz Abstract We study linear programming relaxations of Vertex Cover and Max Cut arising from repeated applications of the \lift-and-project" method of Lovasz and Schrijver starting from the standard linear programming relaxation. For Vertex Cover, Arora, Bollobas, Lovasz and Tourlakis prove that the integrality gap remains at least 2 − " after Ω"(log n) rounds, where n is the number of vertices, and Tourlakis proves that integrality gap remains at least 1:5 − " after Ω((log n)2) rounds. Fernandez de la 1 Vega and Kenyon prove that the integrality gap of Max Cut is at most 2 + " after any constant number of rounds. (Their result also applies to the more powerful Sherali-Adams method.) We prove that the integrality gap of Vertex Cover remains at least 2 − " after Ω"(n) rounds, and that the integrality gap of Max Cut remains at most 1=2 + " after Ω"(n) rounds. 1 Introduction Lovasz and Schrijver [LS91] describe a method, referred to as LS, to tighten a linear programming relaxation of a 0/1 integer program. The method adds auxiliary variables and valid inequalities, and it can be applied several times sequentially, yielding a sequence (a \hierarchy") of tighter and tighter relaxations. The method is interesting because it produces relaxations that are both tightly constrained and efficiently solvable. For a linear programming relaxation K, denote by N(K) the relaxation obtained by the application of the LS method, and by N k(K) the relaxation obtained by applying the LS method k times. -
Optimal Inapproximability Results for MAX-CUT and Other 2-Variable Csps?
Electronic Colloquium on Computational Complexity, Report No. 101 (2005) Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? Subhash Khot∗ Guy Kindlery Elchanan Mosselz College of Computing Theory Group Department of Statistics Georgia Tech Microsoft Research U.C. Berkeley [email protected] [email protected] [email protected] Ryan O'Donnell∗ Theory Group Microsoft Research [email protected] September 19, 2005 Abstract In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of αGW + , for all > 0; here αGW :878567 denotes the approxima- tion ratio achieved by the Goemans-Williamson algorithm [25]. This≈implies that if the Unique Games Conjecture of Khot [36] holds then the Goemans-Williamson approximation algorithm is optimal. Our result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the MAX-CUT problem. Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture in the original version of this paper, and was subsequently confirmed in [42]. A stronger version of this conjecture called Plurality Is Stablest is still open, although [42] contains a proof of an asymptotic version of it. Our techniques extend to several other two-variable constraint satisfaction problems. In particular, subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT, MAX-q-CUT, and MAX-2LIN(q). For MAX-2SAT we show approximation hardness up to a factor of roughly :943. This nearly matches the :940 approximation algorithm of Lewin, Livnat, and Zwick [40]. -
Ma/CS 6B Class 8: Planar and Plane Graphs
1/26/2017 Ma/CS 6b Class 8: Planar and Plane Graphs By Adam Sheffer The Utilities Problem Problem. There are three houses on a plane. Each needs to be connected to the gas, water, and electricity companies. ◦ Is there a way to make all nine connections without any of the lines crossing each other? ◦ Using a third dimension or sending connections through a company or house is not allowed. 1 1/26/2017 Rephrasing as a Graph How can we rephrase the utilities problem as a graph problem? ◦ Can we draw 퐾3,3 without intersecting edges. Closed Curves A simple closed curve (or a Jordan curve) is a curve that does not cross itself and separates the plane into two regions: the “inside” and the “outside”. 2 1/26/2017 Drawing 퐾3,3 with no Crossings We try to draw 퐾3,3 with no crossings ◦ 퐾3,3 contains a cycle of length six, and it must be drawn as a simple closed curve 퐶. ◦ Each of the remaining three edges is either fully on the inside or fully on the outside of 퐶. 퐾3,3 퐶 No 퐾3,3 Drawing Exists We can only add one red-blue edge inside of 퐶 without crossings. Similarly, we can only add one red-blue edge outside of 퐶 without crossings. Since we need to add three edges, it is impossible to draw 퐾3,3 with no crossings. 퐶 3 1/26/2017 Drawing 퐾4 with no Crossings Can we draw 퐾4 with no crossings? ◦ Yes! Drawing 퐾5 with no Crossings Can we draw 퐾5 with no crossings? ◦ 퐾5 contains a cycle of length five, and it must be drawn as a simple closed curve 퐶. -
Planarity and Duality of Finite and Infinite Graphs
JOURNAL OF COMBINATORIAL THEORY, Series B 29, 244-271 (1980) Planarity and Duality of Finite and Infinite Graphs CARSTEN THOMASSEN Matematisk Institut, Universitets Parken, 8000 Aarhus C, Denmark Communicated by the Editors Received September 17, 1979 We present a short proof of the following theorems simultaneously: Kuratowski’s theorem, Fary’s theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski’s theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria of Whit- ney, MacLane, Tutte, and Fournier (in the case of Whitney’s theorem and MacLane’s theorem this has already been done by Tutte). In connection with Tutte’s planarity criterion in terms of non-separating cycles we give a short proof of the result of Tutte that the induced non-separating cycles in a 3-connected graph generate the cycle space. We consider each of the above-mentioned planarity criteria for infinite graphs. Specifically, we prove that Tutte’s condition in terms of overlap graphs is equivalent to Kuratowski’s condition, we characterize completely the infinite graphs satisfying MacLane’s condition and we prove that the 3- connected locally finite ones have convex representations. We investigate when an infinite graph has a dual graph and we settle this problem completely in the locally finite case. We show by examples that Tutte’s criterion involving non-separating cy- cles has no immediate extension to infinite graphs, but we present some analogues of that criterion for special classes of infinite graphs. -
Lecture 16: Constraint Satisfaction Problems 1 Max-Cut SDP
A Theorist's Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O'Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem from last lecture. We are given a graph G = (V; E) and our goal is to find a function F : V ! {−1; 1g that maximizes Pr(i;j)∼E[F (vi) 6= F (vj)]. As we saw before, this is NP-hard to do optimally, but we had the following SDP relaxation. 1 1 max avg(i;j)2Ef 2 − 2 yijg s.t. yvv = 1 8v Y = (yij) is symmetric and PSD Note that the second condition is a relaxation of the constraint \9xi s.t. yij = xixj" which is the constraint needed to exactly model the max-cut problem. Further, recall that a matrix being Positive Semi Definitie (PSD) is equivalent to the following characterizations. 1. Y 2 Rn×m is PSD. 2. There exists a U 2 Rm×n such that Y = U T U. 3. There exists joint random variables X1;::: Xn such that yuv = E[XuXv]. ~ ~ ~ ~ 4. There exists vectors U1;:::; Un such that yvw = hUv; Uwi. Using the last characterization, we can rewrite our SDP relaxation as follows 1 1 max avg(i;j)2Ef 2 − 2 h~vi; ~vjig 2 s.t. k~vik2 = 1 Vector ~vi for each vi 2 V First let's make sure this is actually a relaxation of our original problem. To see this, ∗ ∗ consider an optimal cut F : V ! f1; −1g. Then, if we let ~vi = (F (vi); 0;:::; 0), all of the constraints are satisfied and the objective value remains the same. -
On the Treewidth of Triangulated 3-Manifolds
On the Treewidth of Triangulated 3-Manifolds Kristóf Huszár Institute of Science and Technology Austria (IST Austria) Am Campus 1, 3400 Klosterneuburg, Austria [email protected] https://orcid.org/0000-0002-5445-5057 Jonathan Spreer1 Institut für Mathematik, Freie Universität Berlin Arnimallee 2, 14195 Berlin, Germany [email protected] https://orcid.org/0000-0001-6865-9483 Uli Wagner Institute of Science and Technology Austria (IST Austria) Am Campus 1, 3400 Klosterneuburg, Austria [email protected] https://orcid.org/0000-0002-1494-0568 Abstract In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how “simple” or “thin” a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology – some of them known to be computationally hard in general – that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. -
5 Graph Theory
last edited March 21, 2016 5 Graph Theory Graph theory – the mathematical study of how collections of points can be con- nected – is used today to study problems in economics, physics, chemistry, soci- ology, linguistics, epidemiology, communication, and countless other fields. As complex networks play fundamental roles in financial markets, national security, the spread of disease, and other national and global issues, there is tremendous work being done in this very beautiful and evolving subject. The first several sections covered number systems, sets, cardinality, rational and irrational numbers, prime and composites, and several other topics. We also started to learn about the role that definitions play in mathematics, and we have begun to see how mathematicians prove statements called theorems – we’ve even proven some ourselves. At this point we turn our attention to a beautiful topic in modern mathematics called graph theory. Although this area was first introduced in the 18th century, it did not mature into a field of its own until the last fifty or sixty years. Over that time, it has blossomed into one of the most exciting, and practical, areas of mathematical research. Many readers will first associate the word ‘graph’ with the graph of a func- tion, such as that drawn in Figure 4. Although the word graph is commonly Figure 4: The graph of a function y = f(x). used in mathematics in this sense, it is also has a second, unrelated, meaning. Before providing a rigorous definition that we will use later, we begin with a very rough description and some examples. -
SELF-DUAL GRAPHS 1. Self-Duality of Graphs 1.1. Forms of Self
SELF-DUAL GRAPHS BRIGITTE SERVATIUS AND HERMAN SERVATIUS Abstract. We consider the three forms of self-duality that can be exhibited by a planar graph G, map self-duality, graph self-duality and matroid self- duality. We show how these concepts are related with each other and with the connectivity of G. We use the geometry of self-dual polyhedra together with the structure of the cycle matroid to construct all self-dual graphs. 1. Self-Duality of Graphs 1.1. Forms of Self-duality. Given a planar graph G = (V, E), any regular em- bedding of the topological realization of G into the sphere partitions the sphere into regions called the faces of the embedding, and we write the embedded graph, called a map, as M = (V, E, F ). G may have loops and parallel edges. Given a map M, we form the dual map, M ∗ by placing a vertex f ∗ in the center of each face f, and for ∗ each edge e of M bounding two faces f1 and f2, we draw a dual edge e connecting ∗ ∗ the vertices f1 and f2 and crossing e once transversely. Each vertex v of M will then correspond to a face v∗ of M ∗ and we write M ∗ = (F ∗,E∗,V ∗). If the graph G has distinguishable embeddings, then G may have more than one dual graph, see Figure 1. In this example a portion of the map (V, E, F ) is flipped over on a Q ¡@A@ ¡BB Q ¡ sA @ ¡ sB QQ ¨¨ HH H ¨¨PP ¨¨ ¨ H H ¨ H@ HH¨ @ PP ¨ B¨¨ HH HH HH ¨¨ ¨¨ H HH H ¨¨PP ¨ @ Hs ¨s @¨c H c @ Hs ¢¢ HHs @¨c P@Pc¨¨ s s c c c c s s c c c c @ A ¡ @ A ¢ @s@A ¡ s c c @s@A¢ s c c ∗ ∗ ∗ ∗ 0 ∗ 0∗ ∗ ∗ (V, E,s F ) −→ (F ,E ,V ) (V, E,s F ) −→ (F ,E ,V ) Figure 1. -
Master's Thesis
Master's thesis BWO: Wiskunde∗ A search for the regular tessellations of closed hyperbolic surfaces Student: Benny John Aalders 1st supervisor: Prof. dr. Gert Vegter 2nd supervisor: Dr. Alef Sterk 31st August 2017 ∗Part of the master track: Educatie en Communicatie in de Wiskunde en Natuur- wetenschappen Abstract In this thesis we study regular tessellations of closed orientable surfaces of genus 2 and higher. We differentiate between a purely topological setting and a metric setting. In the topological setting we will describe an algorithm that finds all possible regular tessellations. We also provide the output of this algorithm for genera 2 up to and including 10. In the metric setting we will prove that all topological regular tessellations can be realized metrically. Our method provides an alternative to that of Edmonds, Ewing and Kulkarni. Contents 1 Introduction 1 2 Preliminaries 2 2.1 Hyperbolic geometry . .2 2.2 Fundamental domains . .3 2.3 Side pairings . .4 2.4 A brief discussion on Poincar´e'sTheorem . .5 2.5 Riemann Surfaces . .6 2.6 Tessellations . .9 3 Tessellations of a closed orientable genus-2+ surface 14 3.1 Tessellations of a closed orientable genus-2+ surface consisting of one tile . 14 3.2 How to represent a closed orientable genus-2+ surface as a poly- gon. 16 3.3 Find all regular tessellations of a closed orientable genus-2+ surface 17 4 Making metric regular tessellations out of topological regular tessellations 19 4.1 Exploring the possibilities . 19 4.2 Going from topologically regular to metrically regular . 21 Appendices A An Octave script that prints what all possible fp; qg tessellations for some closed orientable genus-g surface are into a file 28 B All regular tessellations of closed orientable surfaces of genus 2 to 10 33 References 52 1 Introduction In this thesis we will show how to find all possible regular tessellations of a genus-g surface, where g ≥ 2 (genus-2+ surfaces for short). -
Matroid Duality from Topological Duality in Surfaces of Nonnegative Euler Characteristic
Wright State University CORE Scholar Mathematics and Statistics Faculty Publications Mathematics and Statistics 9-2002 Matroid Duality from Topological Duality in Surfaces of Nonnegative Euler Characteristic Dan Slilaty Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/math Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons Repository Citation Slilaty, D. (2002). Matroid Duality from Topological Duality in Surfaces of Nonnegative Euler Characteristic. Combinatorics Probability & Computing, 11 (5), 515-528. https://corescholar.libraries.wright.edu/math/23 This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Combinatorics, Probability and Computing (2002) 11, 515–528. c 2002 Cambridge University Press DOI: 10.1017/S0963548302005278 Printed in the United Kingdom Matroid Duality from Topological Duality in Surfaces of Nonnegative Euler Characteristic DANIEL C. SLILATY Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA (e-mail: [email protected]) Received 13 June 2001; revised 11 February 2002 Let G be a connected graph that is 2-cell embedded in a surface S, and let G∗ be its topological dual graph. We will define and discuss several matroids whose element set is E(G), for S homeomorphic to the plane, projective plane, or torus. We will also state and prove old and new results of the type that the dual matroid of G is the matroid of the topological dual G∗. -
Regular Edge Labelings and Drawings of Planar Graphs
Regular Edge Labelings and Drawings of Planar Graphs Xin He 1 and Ming-Yang Kao 2 1 Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260. Research supported in part by NSF grant CCR-9205982. 2 Department of Computer Science, Duke University, Durham, NC 27706. Research supported in part by NSF grant CCR-9101385. Abstract. The problems of nicely drawing planar graphs have received increasing attention due to their broad applications [5]. A technique, reg- ular edge labeling, was successfully used in solving several planar graph drawing problems, including visibility representation, straight-line embed- ding, and rectangular dual problems. A regular edge labeling of a plane graph G labels the edges of G so that the edge labels around any vertex show certain regular pattern. The drawing of G is obtained by using the combinatorial structures resulting from the edge labeling. In this paper, we survey these drawing algorithms and discuss some open problems. 1 Visibility Representation Given a planar graph G = (V, E), a visibility representation (VR) of G maps each vertex of G into a horizontal line segment and each edge into a vertical line segment that only touches the two horizontal line segments representing its end vertices. This representation has been used in several applications for representing electrical diagrams and schemes [28]. Linear time algorithms for constructing a VR has been independently discovered by Rosenstiehl and Tarjan [20] and Tamassia and Tollis [29]. Their algorithms are based on: Definition 1: Let G be a connected plane graph and s, t be two vertices on the exterior face of G.