Nystagmus and Ocular Oscillations in Infancy and Childhood Richard W

Total Page:16

File Type:pdf, Size:1020Kb

Nystagmus and Ocular Oscillations in Infancy and Childhood Richard W 9 Nystagmus and Ocular Oscillations in Infancy and Childhood Richard W. Hertle ye care practitioners may be among the first to evaluate Einfants and children with involuntary ocular movements. Pediatric ophthalmologists may, in fact, see more patients with nystagmus than any other specialist because of the frequent association of nystagmus with strabismus.9,16,20,42,54,61,75 Nystag- mus may be covered less frequently in literature and research because there is less we understand or can do about it, compared to strabismus or other childhood eye diseases. HISTORICAL PERSPECTIVE Nystagmus is a rhythmic, involuntary oscillation of one or both eyes. The term comes from the Greek word “nystagmos,” to nod, drowsiness and from “nystazein,” to doze; probably akin to Lithuanian “snusti,” also to doze. Using the information obtained from a complete history, physical examination, and radiographic and oculographic evaluations, more than 40 types of nystagmus can be distinguished (Table 9-1). Some forms of nystagmus are physiological whereas others are pathological. Although the nystagmus is typically described by its more easily observable fast (jerk) phase, the salient clinical and pathological feature is the presence of a slow phase in one or both directions. Clinical descriptions of nystagmus are usually based on the direc- tion of the fast phase and are termed horizontal, vertical, or rotary, or any combination of these (Fig. 9-1). The nystagmus may be conjugate or dysconjugate, indicating whether the eyes move 289 290 handbook of pediatric neuro-ophthalmology TABLE 9-1. Nystagmus Types as Identified by History, Physical Examination, and Ocular Motility Recordings. 1. Acquired 2. Arthrokinetic 3. Associated 4. Audiokinetic 5. Bartel’s 6. Bruns’ 7. Centripetal 8. Cervical 9. Circular/elliptic/oblique 10. Congenital/infantile syndrome 11. Convergence 12. Dissociated 13. Downbeat 14. Drug-induced 15. Epileptic 16. Flash-induced 17. Gaze-evoked 18. Horizontal 19. Induced (provoked) 20. Intermittent vertical 21. Jerk 22. Latent/manifest latent 23. Lateral medullary 24. Lid 25. Miner’s (occupational) 26. “Muscle-paretic” 27. Optokinetic 28. Optokinetic after (induced) 29. Pendular 30. Periodic/aperiodic alternating 31. Physiological (endpoint, fatigue) 32. Pursuit (after induced) 33. Rebound 34. Reflex (Baer’s) 35. See-saw 36. Somatosensory induced 37. Spasmus nutans 38. Spontaneous (“voluntary”) 39. Torsional 40. Uniocular 41. Upbeat 42. Vertical 43. Vestibular (central, peripheral, geotropic, ageotropic, galvanic, head shaking, positional, caloric, rotational) chapter 9: nystagmus and ocular oscillations 291 FIGURE 9-1. Diagram of nystagmus in nine positions of gaze. Arrow- heads indicate direction of jerk: fast phase if on one end, pendular nys- tagmus if on both ends, and increasing frequency with more arrowheads. Additional lines indicate increased nystagmus amplitude. The curved lines indicate torsional nystagmus. in synchrony. The nystagmus may be predominantly pendular or jerky, the former referring to equal velocity of the to-and-fro movement of the eyes, and the latter referring to the eyes moving faster in one direction and slower in the other. Involuntary ocular oscillations containing only fast phases are referred to as “sac- cadic oscillations and intrusions” and not nystagmus (Table 9- 2). It is well documented that differentiating true nystagmus from saccadic oscillations and intrusions is sometimes TABLE 9-2. Saccadic Intrusions and Oscillations Identified by History, Physical Examination, and Ocular Motility Recordings. 1. Bobbing/dipping 2. Double saccadic pulses 3. Dynamic overshoot 4. Dysmetria 5. Flutter 6. Flutter dysmetria 7. Macrosaccadic oscillations 8. Myoclonus 9. Opsoclonus 10. Psychogenic flutter (voluntary nystagmus) 11. Saccadic lateropulsion 12. Saccadic pulses/pulse trains (“abduction,” ataxic, intrusions) 13. Square wave jerks/oscillations 14. Superior oblique myokymia 292 handbook of pediatric neuro-ophthalmology impossible clinically. Recent advances in eye movement record- ing technology have increased its application in infants and chil- dren who have disturbances of the ocular motor system.1,4 INCIDENCE In 1991, Stang retrospectively reviewed the records of Group Health Inc. (White Bear Lake, Minnesota, U.S.A.) and in their pediatric population of 70,000 found a prevalence of clinical “nystagmus” of 1 in 2850.66 Other estimates of its incidence range from 1 in 350 to 1 in 6550.11,28,38,41,55 Up to 50% of the infantile strabismic population have some associated nystag- mus.9,20,39,42,44,45,54,60 If these cases are included in the prevalence estimates, then up to 0.5% of the population would be consid- ered to have some form of nystagmus. ETIOLOGY The theoretical neuronal mechanisms of nystagmus continue to evolve and a single unifying explanation is still lacking. However, three major supranuclear inputs to the oculomotor system are clearly important in stabilizing eye movements; their dysfunction may lead to nystagmus. These inputs are the pursuit system, the vestibular system, and the neural integrator. The pursuit system, previously thought to have only a dynamic function, provides a major input for fixation stability (e.g., pursuit at “0 velocity” is stable fixation).37,57 The outputs of the right and left vestibular apparati are neural discharges, each of which tends to drive the eyes contralaterally. Normally the right and the left outputs are equal and cancel each other. Head rotation and unilateral vestibular damage alter this balance. For example, right vestibular damage causes the eyes to drift to the right side. A corrective saccade is then made toward the left. A distinguishing feature of vestibular nystagmus is that the slow phase of the nystagmus toward the affected side is of constant velocity as recorded by electronystagmography. It is important to realize that most forms of acquired nystagmus are caused by disease of the vestibular system (centrally or periph- erally). Eye movement recordings show various combinations of slow phases including uniplanar or multiplanar, simple pendu- lar, linear, and decelerating.52 chapter 9: nystagmus and ocular oscillations 293 The neutral integrator is a theoretical neuronal system that changes the resting firing rate to the extraocular muscles to (1) overcome the viscoelastic forces of the orbit and (2) maintain a position of eccentric gaze. The exact location of the neural inte- grator is unknown, but much of its function resides in the nucleus prepositus hypoglossi (NPH), located just caudal to the abducens nucleus.53,57 Two types of dysfunction of the neural integrator are postulated: integrator leak and high-gain instability. With inte- grator leak, the firing rate of the extraocular muscles is inadequate to overcome the viscoelastic forces of the orbit and maintain the desired eccentric position of gaze; this results in a slow drift of the eyes toward the primary position of gaze and a corrective saccade back toward the desired eccentric position. The slow phase of the nystagmus as recorded by ocular motility recordings is linear (i.e., of constant velocity) or decelerating. Clinically, one observes gaze-evoked or gaze-paretic nystagmus. High-gain instability is a term borrowed from engineering to try to explain the pathophysiology of infantile (congenital) nys- tagmus. In infantile nystagmus, the slow-phase velocity increases as the eyes move from the desired position of gaze; this is referred to as an accelerating slow phase. The ocular motor system (the “output”) is improperly calibrated with the afferent visual system (the “input”). Gain is the ratio of output to input, and in the devel- oping visual system, gain is properly calibrated in the first few weeks to months of life.24,46,73 Faulty calibration of the gain may be a contributing factor in the etiology of infantile nystagmus. The pathophysiology of latent nystagmus and manifest/latent nystagmus (LN/MLN) (referred to by some as fusion maldevel- opment nystagmus syndrome) is different from and less well understood than infantile nystagmus. Because it commonly is associated with the infantile strabismus syndrome, its cause may be related to the documented persistence of nasotemporal motion processing asymmetry that is also characteristic of the syndrome. CLINICAL FEATURES OF NYSTAGMUS IN INFANCY AND CHILDHOOD Neonatal and Early Infantile Nystagmus Distinguishing acquired from the benign neonatal/infantile forms of nystagmus is important because of the implication for under- lying neurological disease in acquired nystagmus (Table 9-3). A 294 TABLE 9-3. Types of Early-Onset Nystagmus. Characteristic INS LN/MLN SN Onset first few months of life Yes Yes Yes May be only visual system Yes Yes Yes deficit (“motor” only) neuro-ophthalmology handbook ofpediatric May be associated with sensory Yes; e.g., albinism, Yes; e.g., strabismic Yes, occasional chiasmal, system disease achromatopsia, aniridia, optic amblyopia hypothalamic, optic pathway nerve hypoplasia gliomas and retinal dystrophy Oscillation characteristics Bilateral, conjugate, symmetrical, Bilateral, conjugate, symmetrical, Low amplitude, high frequency, uniplanar, jerk/pendular uniplanar, jerk (can be worse in dysconjugate, asymmetrical, amblyopic eye) pendular, multiplanar Oscillopsia No No No Worsens with increased fixation Yes No No effort and anxiety Improves with convergence, Yes Yes ??? fatigue, sleep Anomalous head posture Yes, ϳ20% by 1 year of age, Yes, ϳ5%–10%, due to an Yes, usually multiplanar (e.g., a tilt due to “gaze-null”
Recommended publications
  • Hereditary Nystagmus in Early Childhood
    J Med Genet: first published as 10.1136/jmg.7.3.253 on 1 September 1970. Downloaded from Journal of Medical Genetics (1970). 7, 253. Hereditary Nystagmus in Early Childhood BRIAN HARCOURT* Nystagmus is defined as a rhythmic involuntary clinical characteristics of various types of hereditary movement of the eyes, and as an acquired pheno- nystagmus and the techniques which are available menon arising in later childhood or in adult life is to differentiate between 'idiopathic' nystagmus and usually a symptom of serious neurological or laby- nystagmus as a symptom of an occult disorder of the rinthine disease; in such cases the movements of the visual apparatus in early childhood, some descrip- eyes commonly produce subjective symptoms of tion of the modes of inheritance and of the long- objects moving in the visual panorama (oscillopsia). term visual prognosis are given in the various Nystagmus may also be 'congenital', or, more categories of infantile nystagmus which can be so accurately, may first be observed within a few weeks defined. of birth when the infant begins to attempt to fix and to follow visually stimulating targets by means of Character of Nystagmus conjugate movements of the eyes. In such cases, Though it is not usually possible to arrive at the nystagmus may persist throughout life, but even an exact diagnosis of the cause of nystagmus by ob- at a later stage there is always a complete absence of servation of the eye movements alone, a great deal of the symptom of oscillopsia. Nystagmus which useful information can be obtained by such a study.
    [Show full text]
  • Treacher Collins Prize Essay the Significance of Nystagmus
    Eye (1989) 3, 816--832 Treacher Collins Prize Essay The Significance of Nystagmus NICHOLAS EVANS Norwich Introduction combined. The range of forms it takes, and Ophthalmology found the term v!to"[<xy!too, the circumstances in which it occurs, must be like many others, in classical Greece, where it compared and contrasted in order to under­ described the head-nodding of the wined and stand the relationships between nystagmus of somnolent. It first acquired a neuro-ophthal­ different aetiologies. An approach which is mological sense in 1822, when it was used by synthetic as well as analytic identifies those Goodl to describe 'habitual squinting'. Since features which are common to different types then its meaning has been refined, and much and those that are distinctive, and helps has been learned about the circumstances in describe the relationship between eye move­ which the eye oscillates, the components of ment and vision in nystagmus. nystagmus, and its neurophysiological, Nystagmus is not properly a disorder of eye neuroanatomic and neuropathological corre­ movement, but one of steady fixation, in lates. It occurs physiologically and pathologi­ which the relationship between eye and field cally, alone or in conjunction with visual or is unstable. The essential significance of all central nervous system pathology. It takes a types of nystagmus is the disturbance in this variety of different forms, the eyes moving relationship between the sensory and motor about one or more axis, and may be conjugate ends of the visual-oculomotor axis. Optimal or dysjugate. It can be modified to a variable visual performance requires stability of the degree by external (visual, gravitational and image on the retina, and vision is inevitably rotational) and internal (level of awareness affected by nystagmus.
    [Show full text]
  • Macular Dystrophies Mimicking Age-Related Macular Degeneration
    Progress in Retinal and Eye Research 39 (2014) 23e57 Contents lists available at ScienceDirect Progress in Retinal and Eye Research journal homepage: www.elsevier.com/locate/prer Macular dystrophies mimicking age-related macular degeneration Nicole T.M. Saksens a,1,2,7, Monika Fleckenstein b,1,3,7, Steffen Schmitz-Valckenberg b,4,7, Frank G. Holz b,3,7, Anneke I. den Hollander a,5,7, Jan E.E. Keunen a,5,7, Camiel J.F. Boon a,c,d,5,6,7, Carel B. Hoyng a,*,7 a Department of Ophthalmology, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX Nijmegen, The Netherlands b Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, Bonn, Germany c Oxford Eye Hospital and Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford OX3 9DU, United Kingdom d Department of Ophthalmology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands article info abstract Article history: Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly Available online 28 November 2013 population in the Western world. AMD is a clinically heterogeneous disease presenting with drusen, pigmentary changes, geographic atrophy and/or choroidal neovascularization. Due to its heterogeneous Keywords: presentation, it can be challenging to distinguish AMD from several macular diseases that can mimic the Age-related macular degeneration features of AMD. This clinical overlap may potentially lead to misdiagnosis. In this review, we discuss the AMD characteristics of AMD and the macular dystrophies that can mimic AMD. The appropriate use of clinical Macular dystrophy and genetic analysis can aid the clinician to establish the correct diagnosis, and to provide the patient Differential diagnosis Retina with the appropriate prognostic information.
    [Show full text]
  • 39Th Annual Meeting
    North American Neuro-Ophthalmology Society 39th Annual Meeting February 9–14, 2013 Snowbird Ski Resort • Snowbird, Utah POSTER PRESENTATIONS Tuesday, February 12, 2013 • 6:00 p.m. – 9:30 p.m. Authors will be standing by their posters during the following hours: Odd-Numbered Posters: 6:45 p.m. – 7:30 p.m. Even-Numbered Posters: 7:30 p.m. – 8:15 p.m. The Tour of Posters has been replaced with Distinguished Posters. The top-rated posters this year are marked with a “*” in the Syllabus and will have a ribbon on their poster board. Poster # Title Presenting Author 1* Redefining Wolfram Syndrome in the Molecular Era Patrick Yu-Wai-Man Management and Outcomes of Idiopathic Intracranial Hypertension with Moderate-Severe 2* Rudrani Banik Visual Field Loss: Pilot Data for the Surgical Idiopathic Intracranial Hypertension Treatment Trial Correlation Between Clinical Parameters And Diffusion-Weighted Magnetic Resonance 3* David M. Salvay Imaging In Idiopathic Intracranial Hypertension 4* Contrast Sensitivity Visual Acuity Defects in the Earliest Stages of Parkinsonism Juliana Matthews 5* Visual Function and Freedom from Disease Activity in a Phase 3 Trial for Relapsing Multiple Sclerosis Laura J. Balcer Dimensions of the Optic Nerve Head Neural Canal Using Enhanced Depth Imaging Optical 6* Kevin Rosenberg Coherence Tomography in Non-Arteritic Ischemic Optic Neuropathy Compared to Normal Subjects Eye Movement Perimetry: Evaluation of Saccadic Latency, Saccadic Amplitude, and Visual 7* Matthew J. Thurtell Threshold to Peripheral Visual Stimuli in Young Compared With Older Adults 9* Advanced MRI of Optic Nerve Drusen: Preliminary Findings Seth A. Smith 10* Clinical Features of OPA1-Related Optic Neuropathy: A Retrospective Case Series Philip M.
    [Show full text]
  • The Pharmacological Treatment of Nystagmus: a Review
    Review The pharmacological treatment of nystagmus: a review Rebecca Jane McLean & Irene Gottlob† Ophthalmology Group, University of Leicester, UK 1. Introduction 2. Acquired nystagmus Nystagmus is an involuntary, to-and-fro movement of the eyes that can result in a reduction in visual acuity and oscillopsia. Mechanisms that cause 3. Infantile nystagmus nystagmus are better understood in some forms, such as acquired periodic 4. Other treatments used in alternating nystagmus, than in others, for example acquired pendular nystagmus nystagmus, for which there is limited knowledge. Effective pharmacological 5. Conclusion treatment exists to reduce nystagmus, particularly in acquired nystagmus 6. Expert opinion and, more recently, infantile nystagmus. However, as there are very few randomized controlled trials in the area, most pharmacological treatment options in nystagmus remain empirical. Keywords: 3,4-diaminopyridine, acquired nystagmus, acquired pendular nystagmus, baclofen, downbeat nystagmus, gabapentin, infantile nystagmus, memantine, multiple sclerosis, periodic alternating nystagmus, upbeat nystagmus Expert Opin. Pharmacother. (2009) 10(11):1805-1816 1. Introduction The involuntary, to-and-fro oscillation of the eyes in pathological nystagmus can occur in the horizontal, vertical and/or torsional plane and be further classified into a jerk or pendular waveform [1]. Nystagmus leads to reduced visual acuity due to the excessive motion of images on the retina, and also the movement of images away from the fovea [2]. As the desired target falls further from the centre of the fovea, receptor density decreases and therefore the ability to perceive detail is reduced [3]. Visual acuity also declines the faster the target moves across the fovea [4]. Three main mechanisms stabilize the line of sight (to static targets) so that the image we see is fixed and clear.
    [Show full text]
  • Visual Perception in Migraine: a Narrative Review
    vision Review Visual Perception in Migraine: A Narrative Review Nouchine Hadjikhani 1,2,* and Maurice Vincent 3 1 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA 2 Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, 41119 Gothenburg, Sweden 3 Eli Lilly and Company, Indianapolis, IN 46285, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-724-5625 Abstract: Migraine, the most frequent neurological ailment, affects visual processing during and between attacks. Most visual disturbances associated with migraine can be explained by increased neural hyperexcitability, as suggested by clinical, physiological and neuroimaging evidence. Here, we review how simple (e.g., patterns, color) visual functions can be affected in patients with migraine, describe the different complex manifestations of the so-called Alice in Wonderland Syndrome, and discuss how visual stimuli can trigger migraine attacks. We also reinforce the importance of a thorough, proactive examination of visual function in people with migraine. Keywords: migraine aura; vision; Alice in Wonderland Syndrome 1. Introduction Vision consumes a substantial portion of brain processing in humans. Migraine, the most frequent neurological ailment, affects vision more than any other cerebral function, both during and between attacks. Visual experiences in patients with migraine vary vastly in nature, extent and intensity, suggesting that migraine affects the central nervous system (CNS) anatomically and functionally in many different ways, thereby disrupting Citation: Hadjikhani, N.; Vincent, M. several components of visual processing. Migraine visual symptoms are simple (positive or Visual Perception in Migraine: A Narrative Review. Vision 2021, 5, 20. negative), or complex, which involve larger and more elaborate vision disturbances, such https://doi.org/10.3390/vision5020020 as the perception of fortification spectra and other illusions [1].
    [Show full text]
  • TRAUMATIC BRAIN INJURY Experts Speculate That Perhaps Just As Many – Or More - Hit Their Heads and Never Have It Checked Out
    8/1/2019 ‘’POST-CONCUSSION SYNDROME AND VISUAL-VESTIBULAR INTEGRATION DISCLOSURE POLICY DYSFUNCTION” It is the policy of our office, Vincent R. Vicci Jr., O.D., P.A., to state that I have no formal affiliation with other practices, offices, hospitals with the exception of being a staff consultant to the Kessler Institute SEPTEMBER – 2019 for Rehabilitation from which I receive no direct compensation. I have no affiliation with any pharmaceutical company or any company that distributes supplies or instrumentation to doctors and providers of vision care services. I have no copyrighted information, supplies or instrumentation that will be utilized in this presentation. All NEURO-OPTOMETRIC REHABILITATION information supplied during this presentation is based solely upon well established and accepted principles and clinical expertise in the areas LEVEL II EDUCATION discussed. Footnoted materials are presented with all handouts and Power Point presentations. Presentations are prepared and delivered with a high degree of professional conduct to all appropriate VINCENT R. VICCI JR., O.D. participants without discrimination against learners on the basis of gender, age, socioeconomic or ethnic background, sexual orientation WESTFIELD, N.J. or disability. VINCENT R. VICCI JR., O.D., D.P.N.A.P, F.N.O.R.A. • Distinguished Practitioner: National Academies of Practice • Fellow: Neuro-Optometric Rehabilitation Association • Staff consultant - Vision Care Clinics – Kessler Institute for Rehabilitation (West Orange, Saddle Brook, Chester, N.J.) • Consultant: Hartwyck at Oak Tree – J.F.K. Rehabilitation Institute • Seton Hall U.: M.S.O.T. program / yearly guest lecturer • Kean University: O.T. program / yearly guest lecturer • Past President / Co-Founder: Neuro-Optometric Rehabilitation Association (NORA) • Member: O.E.P., N.J.S.O.P, A.O.A.
    [Show full text]
  • Simulation of Oscillopsia in Virtual Reality
    This is a repository copy of Simulation of oscillopsia in virtual reality. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/132350/ Version: Published Version Article: Randall, D., Griffiths, H. orcid.org/0000-0003-4286-5371, Arblaster, G. orcid.org/0000-0002-3656-3740 et al. (2 more authors) (2018) Simulation of oscillopsia in virtual reality. British and Irish Orthoptic Journal, 14 (1). pp. 45-49. ISSN 1743-9868 10.22599/bioj.112 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Randall, D, et al. 2018. Simulation of Oscillopsia in Virtual Reality. British and Irish Orthoptic Journal, 14(1), pp.4549, DOI: https://doi.org/10.22599/bioj.112 ORIGINAL ARTICLE Simulation of Oscillopsia in Virtual Reality David Randall, Helen Griffiths, Gemma Arblaster, Anne Bjerre and John Fenner Purpose: Nystagmus is characterised by involuntary eye movement. A proportion of those with nystagmus experience the world constantly in motion as their eyes move: a symptom known as oscillopsia. Individuals with oscillopsia can be incapacitated and often feel neglected due to limited treatment options.
    [Show full text]
  • Towards an International Classification of Vestibular Disorders
    Journal of Vestibular Research 19 (2009) 1–13 1 DOI 10.3233/VES-2009-0343 IOS Press Classification of vestibular symptoms: Towards an international classification of vestibular disorders First consensus document of the Committee for the Classification of Vestibular Disorders of the B ar´ any´ Society Alexandre Bisdorffa,∗, Michael Von Brevernb, Thomas Lempertc and David E. Newman-Tokerd aDepartment of Neurology, Centre Hospitalier Emile Mayrisch, L-4005 Esch-sur-Alzette, Luxembourg bVestibular Research Group Berlin, Department of Neurology, Park-Klinik Weissensee, Berlin, Germany cVestibular Research Group Berlin, Department of Neurology, Schlosspark-Klinik, Berlin, Germany dDepartment of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA On behalf of the Committee for the Classification of Vestibular Disorders of the Bar´ any´ Society: Pierre Bertholon, Alexandre Bisdorff, Adolfo Bronstein, Herman Kingma, Thomas Lempert, Jose Antonio Lopez Escamez, Måns Magnusson, Lloyd B. Minor, David E. Newman-Toker, Nicolas´ Perez,´ Philippe Perrin, Mamoru Suzuki, Michael von Brevern, John Waterston and Toshiaki Yagi Received 4 February 2009 Accepted 1 September 2009 1. Introduction such as psychiatry and headache, where often there is no histopathologic, radiographic, physiologic, or other The Committee for Classification of Vestibular Dis- independent diagnostic standard available. However, orders of the Bar´ any´ Society was inaugurated at the diagnostic standards and classification are also crucial meeting of the Bar´ any´ Society in Uppsala 2006. Its in areas of medicine such as epilepsy and rheumatolo- charge is to promote development of an implementable gy, where, although confirmatory tests do exist, there classification of vestibular disorders. is substantial overlap in clinical features or biomarkers Symptom and disease definitions are a fundamen- across syndromes.
    [Show full text]
  • Catch One of These Radiology Management Program Webinars
    PROVIDERNews Catch One of These Radiology Management Program Webinars Providers who weren’t able to attend the Radiology Management Program overviews held at our recent Mountain State Provider Workshops will have more opportunities to learn this important information. Twelve webinar sessions have been scheduled in November and December to allow providers to hear tips for how to prepare for the program. Representatives from National Imaging Associates, Inc. (NIA) will conduct two 90-minute sessions on each of the following dates: ® Nov. 16, 2010, 8 a.m. and noon ® Nov. 17, 2010, 8 a.m. and noon ® Dec. 7, 2010, 8 a.m. and noon ® Dec. 8, 2010, 8 a.m. and noon ® Dec. 14, 2010, 8 a.m. and noon ® Dec. 15, 2010, 8 a.m. and noon Registration is required. Please click here to access the registration form. (Continued on page 2) Inside This Edition: Radiology Management Program 2 Prescription Drug Benefit Management Moving 10 Paperless EOB and EFT 2 Watch Your Mail for News about FreedomBlueSM NaviNet® Verification Process 3 PPO and BlueRxSM PDP Changes 11 Mountain State Automates Electronic Changes for Service Benefit Plan FEP Members 11 Professional Claim Adjustments Requests 4 National Consumer Cost Tool Initiative 13 Mountain State to Revise COB Process 6 Mountain State to Update Its List of Procedures Coverage for Certain OTC Medications 6 Requiring Authorization 13 October 2010 Medicare Advantage News 7 Contracting/Reimbursement Update 14 Need help getting ready for ICD-10? 8 Please Note Important Holiday Observances 16 HIPAA News 9 Welcome to Our Newest Groups 16 Procedure Codes Relevant to Dental Services 10 Medical Policy Updates 17 PROVIDERNews Catch One of These Radiology Management Program Webinars (Continued from page 1) You will need a computer with Internet access to view the educational materials presented during the webinar.
    [Show full text]
  • Assessment and Management of Infantile Nystagmus Syndrome
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Atilla, J Clin Exp Ophthalmol 2016, 7:2 g u y o J Ophthalmology 10.4172/2155-9570.1000550 ISSN: 2155-9570 DOI: Review Article Open Access Assessment and Management of Infantile Nystagmus Syndrome Huban Atilla* Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey *Corresponding author: Huban Atilla, Department of Ophthalmology, Faculty of Medicine, Ankara University, Turkey, Tel: +90 312 4462345; E-mail: [email protected] Received date: March 08, 2016; Accepted date: April 26, 2016; Published date: April 29, 2016 Copyright: © 2016 Atilla H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This article is a review of infantile nystagmus syndrome, presenting with an overview of the physiological nystagmus and the etiology, symptoms, clinical evaluation and treatment options. Keywords: Nystagmus syndrome; Physiologic nystagmus phases; active following of the stimulus results in poor correspondence between eye position and stimulus position. At higher velocity targets Introduction (greater than 100 deg/sec) optokinetic nystagmus can no longer be evoked. Unlike simple foveal smooth pursuit, OKN appears to have Nystagmus is a rhythmic, involuntary oscillation of one or both both foveal and peripheral retinal components [3]. Slow phase of the eyes. There are various classifications of nystagmus according to the nystagmus is for following the target and the fast phase is for re- age of onset, etiology, waveform and other characteristics.
    [Show full text]
  • Genetic Syndromes with CMI, Including Many of Skeletal Abnormality, Such
    Correspondence 402 genetic syndromes with CMI, including many of skeletal Correspondence: S George, abnormality, such as achondroplasia.1,2 Tel: þ 44 2890 240 503; CMI is thought to be a skeletal mesodermal disorder Fax: þ 44 2890 330 744. resulting from faulty division embryonic somites E-mail: [email protected] forming the skull base and cranoicervical junction.2 Governing this process is the gene Pax-1, whose Eye (2006) 20, 400–402. doi:10.1038/sj.eye.6701887; malfunction causes vertebral fusion and a small posterior published online 22 April 2005 cranial fossa.2 Altered cerebrospinal fluid flow in this constricted environment produces the varied symptoms, the commonest being suboccipital headache. Ophthalmic Sir, symptoms occur in the majority of patients and include A brief history of punctoplasty: the 3-snip revisited retro orbital pain, floaters, photopsia, photophobia, diplopia, and visual field loss. Hearing loss and We read with interest the article by Caesar et al1 on ‘A vestibular impairment causing vertigo, oscillopsia, and brief history of punctoplasty: the 3-snip revisited’. In the nystagmus, as well as symptoms of spinal cord article, the authors reviewed the development of various dysfunction, are prevalent.4 surgical methods for treating punctal stenosis and Extensive literature search has failed to identify reported their results of 3-snip punctoplasty. We feel that another reported case of familial CMI in the United some issues that may affect the outcomes warrant further Kingdom. Learning points illustrated herein include the discussion. diagnostic challenges posed by CMI, and the importance All the patients were assessed for subjective of assessing family history to increase surveillance of improvement of epiphora at 1 week after operation.
    [Show full text]